在电子工业中,离子注入成为了微电子工艺中的一种重要的掺杂技术,也是控制MOSFET阈值电压的一个重要手段。因此在当代制造大规模集成电路中,可以说是一种必不可少的手段。
离子注入的方法就是在真空中、低温下,把杂质离子加速(对Si,电压≥105 V),获得很大动能的杂质离子即可以直接进入半导体中;同时也会在半导体中产生一些晶格缺陷,因此在离子注入后需用低温进行退火或激光退火来消除这些缺陷。离子注入的杂质浓度分布一般呈现为高斯分布,并且浓度最高处不是在表面,而是在表面以内的一定深度处。
离子注入的优点是能精确控制杂质的总剂量、深度分布和面均匀性,而且是低温工艺(可防止原来杂质的再扩散等),同时可实现自对准技术(以减小电容效应)。
入射离子能量E满足条件:能量低于势垒,波函数在快速衰减趋于0,也就是远离势垒的地方粒子存在的概率几乎为0,粒子被束缚在势垒之间。
对于高能粒子,E=mc^2才是应该用的。如果想将量子力学和狭义相对论放一起,请看量子场论。举个简单的例子,无相互作用的标量粒子,其色散关系就是E^2=p^2+m^2, 而如果看所谓“算符”的话,其实这个式子,是从 得出来的。
离子注入的方法
就是在真空中、低温下,把杂质离子加速(对Si,电压≥105 V),获得很大动能的杂质离子即可以直接进入半导体中;同时也会在半导体中产生一些晶格缺陷,因此在离子注入后需用低温进行退火或激光退火来消除这些缺陷。离子注入的杂质浓度分布一般呈现为高斯分布,并且浓度最高处不是在表面,而是在表面以内的一定深度处。
具体什么运动可以在考试网上查找。
扩展资料:半导体指常温下导电性能介于导体与绝缘体之间的材料。半导体在集成电路、消费电子、通信系统、光伏发电、照明、大功率电源转换等领域都有应用,如二极管就是采用半导体制作的器件。无论从科技或是经济发展的角度来看,半导体的重要性都是非常巨大的。大部分的电子产品,如计算机、移动电话或是数字录音机当中的核心单元都和半导体有着极为密切的关联。常见的半导体材料有硅、锗、砷化镓等,硅是各种半导体材料应用中最具有影响力的一种。
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)