原因如下:
声波器件表面的波速和频率会随外界环境的变化而发生漂移,n型半导体气敏传感器就是利用这种性能在压电晶体表面涂覆一层选择性吸附某气体的气敏薄膜,当该气敏薄膜与待测气体相互作用(化学作用或生物作用,或者是物理吸附),使得气敏薄膜的膜层质量和导电率发生变化时,引起压电晶体的声表面波频率发生漂移。
气体浓度不同,膜层质量和导电率变化程度亦不同,即引起声表面波频率的变化也不同。通过测量声表面波频率的变化就可以获得准确的反应气体浓度的变化值。
气敏传感器内加热丝使气敏传感器工作高温状态加速被测气体吸附和氧化还原反应提高灵敏度和响应速度 ;同时通过加热还使附着壳面上油雾、尘埃烧掉。
在半导体小加入合适的“杂质”就可以改变和控制它的能隙大小。如果在纯Si(硅)中掺杂(l)oping)少量的As(砷)或P(磷),二者的最外层有五个电子,而Si外层只有4个电子,因此就会多出——个自由电子,这样就形成了“N”型半导体。
分类与特点:
1、由于传感器原理是基于物理变化的,因而没有相对运动部件,可以做到结构简单,微型化。
2、灵敏度高,动态性能好,输出为电量。
3、采用半导体为敏感材料容易实现传感器集成化,智能化。
4、功耗低,安全可靠。同时,半导体传感器也存在以下一些缺点。
5、线性范围窄,在精度要求高的场合应采用线性化补偿电路。
6、与所有半导体元件一样,输出特性易受温度影响而漂移,所以应采用补偿措施。
7、性能参数离散性大。
可以考虑根据电阻率的变化,从低温度开始,如果是本征半导体即高纯度,电阻率随温度升高单调下降,但是如果电阻率出现先下降后上升然后再单调下降的话就是高补偿(参照半导体物理书上给出的掺杂半导体电阻率与温度的曲线)。这个答案大家也就总结如此,理论上可行,但是总体来说实际 *** 作不太靠谱,毕竟要降到足够低的温度。 顺带鄙视1楼混答案欢迎分享,转载请注明来源:内存溢出
评论列表(0条)