通过磁场能不能激发半导体的产生空穴?

通过磁场能不能激发半导体的产生空穴?,第1张

磁场是可以激发半导体材料产生空穴的,但自由电子和空穴必须成对产生。条件是:

1,半导体材料在磁场中运动,方向为垂直于磁力线方向;

2,磁场足够强或半导体材料运动足够快。

实际上,半导体材料在强电场或磁场的洛伦兹力作用下“产生”自由电子和空穴的过程就是它的击穿过程,因为这是个雪崩过程,速度快而不可控。

近日,东京理工大学材料科学家进行的一项研究表明,在没有大规模磁排序的情况下,新型磁性半导体中存在大规模的异常霍尔电阻,这也验证了最近的理论预测。他们的发现为反常霍尔效应提供了新的见解,这是一种以前与长程磁序相关的量子现象。

带电粒子(如电子)在电场和磁场的影响下移动时,可以表现出相互影响的方式。例如,当磁场垂直于载流导体的平面时,内部流动的电子由于磁力而开始侧向偏离。很快,导体两端就会出现电压差,这种现象被称为“霍尔效应”。

然而,霍尔效应并不一定需要摆弄磁铁。事实上,它可以在具有长程磁性有序的磁性材料中直接观察到,例如铁磁体。这种现象被称为“反常霍尔效应”(AHE),似乎是霍尔效应的近亲。但是,它的机制更复杂。目前,最被接受的说法是,AHE 是由电子能带的一种被称为“贝里曲率”的特性产生的。

磁性排序对AHE来说是必要的吗?最近的一个理论表明并非如此。出于好奇,内田博士和他在日本的合作者决定对这一理论进行测试。

他们研究了一种新的磁性半导体EuAs的磁特性,该材料仅具有一个奇特的扭曲三角形晶格结构,并观察到23K以下的反铁磁(AFM)行为(相邻的电子自旋排列在相反的方向)。此外,他们观察到,在有外部磁场的情况下,该材料的电阻随温度急剧下降,这种行为被称为"巨大的磁电阻"(CMR)。然而,更有趣的是,CMR甚至在23K以上也被观察到,在那里AFM的秩序消失了。

更加令人惊讶的发现就是霍尔电阻率随温度升高,在70K时达到顶峰,远远高于AFM排序温度,这表明在没有磁性排序的情况下,大型AHE也是可能的。为了了解这种现象的产生原因,研究小组进行了模型计算。结果显示,这种效应可以归因于三角晶格上的自旋簇对电子的倾斜散射,在这种“跳跃制度”下,电子不流动,而是在原子之间“跳跃”。

研究人员表示,这些结果使我们能更加了解磁性固体内部电子的奇怪行为。新发现有助于阐明三角晶格磁性半导体,并有可能打开一个新的研究领域。

该研究论文题为“Above-ordering-temperature large anomalous Hall effect in a triangular-lattice magnetic semiconductor”,已发表在 Science Advances期刊上。

前瞻经济学人APP资讯组

论文原文:https://www.science.org/doi/10.1126/sciadv.abl5381

什么是半导体导带中电子的顺磁性?答:顺磁性是指材料对磁场响应很弱的磁性。如用磁化率 k=M/H 来表示(M和H分别为磁化强度和磁场强度),从这个关系来看,磁化率k是正的,即磁化强度的方向与磁场强度的相同,数值为10-6—10-3量级。

所有物质都具有反磁性。在外磁场作用下,电子的轨道运动产生附加转动,动量矩发生变化,产生与外磁场相反的感生磁矩,表现出反磁性。但在含有不成对电子的物质中被顺磁磁化率掩盖。

抗磁性是指一种弱磁性。组成物质的原子中,运动的电子在磁场中受电磁感应而表现出的属性。外加磁场使电子轨道动量矩绕磁场进动,产生与磁场方向相反的附加磁矩,故磁化率k抗为很小的负值(10-5—10-6量级)。所有物质都具有抗磁性。


欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/dianzi/9066434.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-04-24
下一篇 2023-04-24

发表评论

登录后才能评论

评论列表(0条)

保存