MEMS技术的发展开辟了一个全新的技术领域和产业,采用MEMS技术制作的微传感器、微执行器、微型构件、微机械光学器件、真空微电子器件、电力电子器件等在航空、航天、汽车、生物医学、环境监控、军事以及几乎人们所接触到的所有领域中都有着十分广阔的应用前景。MEMS技术正发展成为一个巨大的产业,就象近20年来微电子产业和计算机产业给人类带来的巨大变化一样,MEMS也正在孕育一场深刻的技术变革并对人类社会产生新一轮的影响。目前MEMS市场的主导产品为压力传感器、加速度计、微陀螺仪、墨水喷咀和硬盘驱动头等。大多数工业观察家预测,未来5年MEMS器件的销售额将呈迅速增长之势,年平均增加率约为18%,因此对对机械电子工程、精密机械及仪器、半导体物理等学科的发展提供了极好的机遇和严峻的挑战。
微机电系统MEMS(Micro-Electro-Mechanical Systems)是一种全新的必须同时考虑多种物理场混合作用的研发领域,相对于传统的机械,它们的尺寸更小,最大的不超过一个厘米,甚至仅仅为几个微米,其厚度就更加微小。采用以硅为主的材料,电气性能优良,硅材料的强度、硬度和杨氏模量与铁相当,密度与铝类似,热传导率接近钼和钨。采用与集成电路(IC)类似的生成技术,可大量利用IC生产中的成熟技术、工艺 ,进行大批量、低成本生产,使性价比相对于传统“机械”制造技术大幅度提高。
完整的MEMS是由微传感器、微执行器、信号处理和控制电路、通讯接口和电源等部件组成的一体化的微型器件系统。其目标是把信息的获取、处理和执行集成在一起,组成具有多功能的微型系统,集成于大尺寸系统中,从而大幅度地提高系统的自动化、智能化和可靠性水平。
沿着系统及产品小型化、智能化、集成化的发展方向,可以预见:MEMS会给人类社会带来另一次技术革命,它将对21世纪的科学技术、生产方式和人类生产质量产生深远影响,是关系到国家科技发展、国防安全和经济繁荣的一项关键技术。
制造商正在不断完善手持式装置,提供体积更小而功能更多的产品。但矛盾之处在于,随着技术的改进,价格往往也会出现飙升,所以这就导致一个问题:制造商不得不面对相互矛盾的要求——在让产品功能超群的同时降低其成本。
解决这一难题的方法之一是采用微机电系统,更流行的说法是MEMS,它使得制造商能将一件产品的所有功能集成到单个芯片上。MEMS对消费电子产品的终极影响不仅包括成本的降低、而且也包括在不牺牲性能的情况下实现尺寸和重量的减小。事实上,大多数消费类电子产品所用MEMS元件的性能比已经出现的同类技术大有提高。虽然MEMS过去只限于汽车、工业和医疗应用,但据调查公司估计:“MEMS消费类电子产品的销售额将在2005年前达到15亿美元”。
手持式设备制造商正在逐渐意识到MEMS的价值以及这种技术所带来的好处——大批量、低成本、小尺寸,而且开始转向成功的MEMS公司,其所实现的成本削减幅度之大,将影响整个消费类电子世界,而不仅是高端装置。
半导体最好的单位肯定是中科院了,高校的话
北大只能用两个字形容--最好。
山东大学的理论也是很棒。其实把山东大学的固体物理教程弄明白了,中科院难度的考试差不多也能应付了。
西安电子科大的微电系也很牛的,他们的单晶生长技术算是独步海内了。据说他们的系主任是早稻田的高材生。另外西电微电系还出了一个林锐,在国内C++,C方面,林锐也是小有名气的。最让人佩服的还是他对技术近乎狂热的执著。
上交大也很不错,上交大的学生很容易进AMD,英飞凌等世界顶级设计公司。
浙江大学,东南大学这些老牌子肯定是没得说的。
东北的话,哈尔滨工业大学的领军地位是不用怀疑的, 它的工科综合能力一直没在全国前三名之外。二十几年前就开发出第一款国产的集成电路设计软件(那时候知道什么是计算机的人也没多少),但市场运营不如国外品牌,衰落了。哈工大的半导体物理目前在MEMS,氢燃料电池等方面有所突破。但客观地讲,现在哈工大的半导体物理专业和北大,上交大等国内顶尖大学的半导体物理专业还是有一定差距的。
但最让人惋惜的是在国际化方面,哈工大和顶尖院校的差距不是越来越小,而是越来越大。每年签常青藤院校的大学生,清华北大,复旦南京,国防科大的学生占了80+%, 其他学校的都有点惨不忍睹。 可以预见,10年后,新的顶尖人才里面,清华北大,复旦南京,国防科大的校友必定占极大比例。
MEMS是微机械(微米/纳米级)与IC集成的微系统,即具有智能的微系统,MEMS基于硅微加工技术但不仅限于它。简单来说,MEMS就是对系统级芯片的进一步集成。我们几乎可以在单个芯片上集成任何东西,像运动装置、光学系统、发音系统、化学分析、无线系统及计算系统等,因此MEMS技术是一门多学科交叉的技术。MEMS器件价格低廉、性能优异、适用于多种应用,将成为影响未来生活的重要技术之一。微电子机械系统(MEMS)技术是建立在微米/纳米技术(micro/nanotechnology)基础上的21世纪前沿技术,是指对微米/纳米材料进行设计、加工、制造、测量和控制的技术。它可将机械构件、光学系统、驱动部件、电控系统集成为一个整体单元的微型系统。这种 微电子机械系统不仅能够采集、处理与发送信息或指令,还能够按照所获取的信息自主地或根据外部的指令采取行动。它用微电子技术和微加工技术(包括硅体微加工、硅表面微加工、LIGA和晶片键合等技术)相结合的制造工艺,制造出各种性能优异、价格低廉、微型化的传感器、执行器、驱动器和微系统。 微电子机械系统(MEMS)是近年来发展起来的一种新型多学科交叉的技术,该技术将对未来人类生活产生革命性的影响。它涉及机械、电子、化学、物理、光学、生物、材料等多学科。对 微电子机械系统(MEMS)的研究主要包括理论基础研究、制造工艺研究及应用研究三类。理论研究主要是研究微尺寸效应、微磨擦、微构件的机械效应以及微机械、微传感器、微执行器等的设计原理和控制研究等;制造工艺研究包括微材料性能、微加工工艺技术、微器件的集成和装配以及微测量技术等;应用研究主要是将所研究的成果,如微型电机、微型阀、微型传感器以及各种专用微型机械投入实用。微电子机械系统(MEMS)的制造,是从专用集成电路(ASIC)技术发展过来的,如同ASIC技术那样,可以用微电子工艺技术的方法批量制造。但比ASIC制造更加复杂,这是由于 微电子机械系统(MEMS)的制造采用了诸如生物或者化学活化剂之类的特殊材料,是一种高水平的微米/纳米技术。微米制造技术包括对微米材料的加工和制造。它的制造工艺包括:光刻、刻蚀、淀积、外延生长、扩散、离子注入、测试、监测与封装。纳米制造技术和工艺,除了包括微米制造的一些技术(如离子束光刻等)与工艺外,还包括利用材料的本质特性而对材料进行分子和原子量级的加工与排列技术和工艺等。 微电子机械系统的制造方法包括LIGA工艺(光刻、电镀成形、铸塑)、声激光刻蚀、非平面电子束光刻、真空镀膜(溅射)、硅直接键合、电火花加工、金刚石微量切削加工。欢迎分享,转载请注明来源:内存溢出
评论列表(0条)