芯片是怎样损坏的

芯片是怎样损坏的,第1张

1. 供电电压

看到这里你也许就笑了,我系统板上的芯片供电是LDO输出的,稳定的很,怎么会烧芯片。这就要从芯片烧写程序的两种方式说起:在板烧录和座烧。

对于个人用户或是某些特定的行业,如汽车电子,大部分都是用在板烧录,

2.png

图 1 在板烧录

另一种方式工厂批量生产用的比较多,即座烧的方式,如下图这种情况。

3.jpg

图 2 座烧

对于很多开发板或者我们自己设计的系统板,调试接口的VCC一般都是直接从芯片供电引脚拉出,如果编程器供电不稳,则很容易造成芯片的过压损坏。下图为一款MCU的供电电压范围:

4.jpg

若编程器供电电压不准或电压不稳,超过了这个范围,则芯片将很容易损坏。

座烧就更不用说了,芯片直接由编程器供电,如果编程器供电不稳,那烧录芯片的良品率将会成为你的噩梦。

2. 芯片加密

一般的开发者很容易忽略芯片为我们提供的这个重要功能,但是当你的产品要大卖的时候,这个功能就显得尤为重要了,加密功能能有效防止你的产片代码被抄袭。芯片加密等级一般有3级,我觉得这款Cypress的芯片手册给出了比较明确的说明。

5.jpg

OPEN:芯片没有保护,意味着你烧录到芯片中的软件可以被山寨者直接读出。

PROTECTED:芯片有了读出保护,意味着没有人可以读出来芯片中的数据,但是芯片可以擦除,擦除之后可以再次使用。

KILL:你的芯片被“杀死了”,和上一个级别的保护一样,没有人可以读取芯片数据,但是这一次,整片擦除也不起作用了,你的芯片无法重新烧录,但是不是真的“死了”,它还可以运行烧录进去的程序。

需要注意的是这些保护一般都是重新上电后才会生效。

如果你哪天没睡醒烧写程序的时候把芯片的加密位设置成了KILL,那么恭喜你,可以换新的芯片了。

6.jpg

另外一种比较有意思的情况发生在大批量生产中,由于各种各样的因素影响,芯片有时候烧到一半就被中断了,而有些芯片的加密位恰恰是在烧录文件的前段,对于有些烧录器,可能会直接按烧录文件顺序烧录,就会造成芯片已经被KILL了,但是由于烧录中断造成后半段的程序还没烧进去,那这个芯片就真的废了。一种比较可靠的烧录方案是在最后烧录加密位,这样就可以有效避免烧录中断造成的芯片意外锁死。

3. 编程高压

7.jpg

有些OTP(一次可编程)芯片可能需要编程高压才能将数据写入,虽说是高压,其实很多也就6、7V左右,再高也就十几伏,这种程度的电压对于我们来说比较安全,但对于很多芯片来说,已经算是高压了,即使是需要这种电压才能编程的一些OTP芯片,也无法长时间承受,因此有些芯片会规定高压加载的最长时间,一旦超过这个极限,OTP区就可能会永久损坏。有些编程器会提供编程高压的输出功能,在烧录的流程中自动开关编程电压,而对于那些没有提供编程高压的编程器,使用时就要小心不要在编程的时候发呆走神了,一定要及时断开编程高压。

此外,还有很多其他的因素会损坏你的芯片,比如静电防护是否做得到位,芯片存储的湿度,温度是否符合要求,芯片焊接的温度是否过高等,要提高烧写的良品率,就要从多个方面做工作,当然也不可忽略以上这些不易引起注意的细节。

1、芯片供电电压

一般的人都会认为自己的系统板上的芯片供电是LD输出的,是非常稳定的认为不会烧芯片,芯片烧写程序一般分为在板烧录和座烧两种方式,在板烧录系统板一般都会有自己的MCU的供电电压范围,调试接口的VCC一般都是直接从芯片供电引脚拉出,

如果编程器供电不稳,超过了这个范围,则很容易造成芯片的过压损坏,座烧一般都是芯片直接由编程器供电,如果编程器供电不稳,那烧录芯片的良品率将大打折扣,造成电源管理芯片损坏。

2、芯片ESD保护机制

通常,杀死芯片有多种方法,芯片会包含ESD保护,如果给芯片外部施加.5V电压,那么在1nm的介质上产生0.5mV/m的电场,这足以导致高压电弧。对于封装内的单个裸片,他们的目标是2kJ这样的标准。

如果你试图最小化ESD,甚至在这些Wide1/O接口或任何类型的多芯片接口通道上消除它,这意味若你无法按照你针对单芯片的相同标准对每个芯片进行真正的测试。它们必须经过更专业的测试,因为它们的ESD保护很小,或者可能没有ESD保护,造成电源管理芯片损坏。

3、磁场对芯片半导体影响

随着智能手机、平板电脑终端的多功能化,其所需要的电源电压也涉及多种规格,因此电源电路用电感器的使用数量呈现增加趋势。电磁敏感性(EMS)是人们不得不担心的问题,电磁干扰(EMI)是芯片向环境发出的噪声,噪声源来自有源电路,

它会在电源/地线和信号线上产生电流,电源线地线将通过封装到PCB。如果它看到封装或PCB.上有天线结构,就会引起空气辐射,然后通过天线结构辐射到环境中产生干扰,能量注入测试是从150kH2开始注入1W能量,直到1GHZ。在每个频率,你会向系统注入1W的能量。

如果你没有足够的保护,就会破坏沿路径进入芯片的电路,或者引脚上的电压可能过高如果电压太高,就会产生过电应变,电源管理芯片就会损坏。

4、芯片的不合理 *** 作损坏

在很多情况下,糟糕的热设计并不会导致瞬间灾难性的故障,甚至不会导致产品平庸,但器件寿命会变短,电源企业在众多环节上做投资,越来越多的半导体生产商都采用嵌入式电源来降低产品成本,也使得功率越来越高,

功率越高也随之造成了电子元器件的发热,芯片发热带来的问题不仅仅是手机在口袋里变热。它会导致晶体管和它们之间的连接退化。这可能电源管理芯片。。

扩展资料:

8种常见电源管理ic芯片分类

1、AC/DC调制IC。内含低电压控制电路及高压开关晶体管。

2、DC/DC调制IC。包括升压/降压调节器,以及电荷泵。

3、功率因数控制PFC预调制IC。提供具有功率因数校正功能的电源输入电路。

4、脉冲调制或脉幅调制PWM/PFM控制IC。为脉冲频率调制和/或脉冲宽度调制控制器,用于驱动外部开关。

5、线性调制IC(如线性低压降稳压器LDO等)。包括正向和负向调节器,以及低压降LDO调制管。

6、电池充电和管理IC。包括电池充电、保护及电量显示IC,以及可进行电池数据通讯“智能”电池IC。

7、热插板控制IC(免除从工作系统中插入或拔除另一接口的影响)。

8、MOSFET或IGBT的开关功能ic。


欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/dianzi/9083125.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-04-24
下一篇 2023-04-24

发表评论

登录后才能评论

评论列表(0条)

保存