为什么半导体材料空穴比电子传输快

为什么半导体材料空穴比电子传输快,第1张

1、首先本征半导体的空穴浓度和电子浓度是相等的;在符合条件(1)和其他有源器件和无源器件构成回路和条件(2)电子激发下,激发的电子成为载流子,在电路中移动,注意本征半导体中的空穴并不能移动.该激发的电子形成了回路的电路.宏观上,热激发和“电子和空穴的复合”在同时进行,达到“动态平衡”,但一定会有“成为载流子”的电子在回路中移动.2、对于P型半导体来说,其本身还是呈“中性的”,只是“可与电子配对的自由空穴”较多,在外电场的作用下,会动态的“拉外部电子”,当拉到一定数量的电子,内部的电场会迫使该“P型半导体”不再多拉电子,达到动态平衡.另外硅的共价键是不很稳定,所以它常用来做半导体.P型半导体是有掺杂叁价元素的,硅原子少了一个电子,这个电子转移到了三价元素的空穴上,这说明的是空穴的移动.

近期,中国科学院合肥物质科学研究院强磁场科学中心研究人员在聚合物半导体的自旋流探测及其薄膜结构-自旋传输性能关系研究中取得新进展,相关研究成果在美国化学会(ACS)旗下期刊《ACS应用材料和界面》(ACS App lied Materials &Interfaces)上在线发表。

有机半导体材料具有微弱自旋-轨道耦合和超精细相互作用,可作为有前途的自旋极化传输介质,因此寻找新型有机自旋电子材料、 探索 其自旋极化传输过程和机制具有重要意义。此前这方面研究大多通过制备有机自旋阀器件来测量携带着自旋极化的电子传输,但存在铁磁/半导体界面的电导失配等问题,严重制约了对有机半导体自旋传输特性定量深入研究。近年来,自旋泵浦激发和探测纯自旋流(不伴随净电荷电流)由于能克服界面电导失配问题,逐渐成为 探索 半导体材料本征自旋传输性质的有力手段。

强磁场中心张发培课题组与研究员童伟合作,采用铁磁共振(FMR)自旋泵浦技术 结合 逆自旋Hall效应(ISHE)测量,研究了新型聚合物半导体PBDTTT-C-T的自旋极化传输特性。他们通过设计一种适合低噪声电压测量的样品架,在NiFe/聚合物/Pt三明治结构中探测到清晰的ISHE信号,通过测量ISHE电压随PBDTTT层厚度的变化,观察到PBDTTT层中纯自旋流传输和长的自旋驰豫时间。

令人吃惊的是,研究人员首次利用半导体/绝缘体聚合物共混薄膜作为自旋极化传输介质,在低含量PBDTTT与绝缘的聚苯乙烯(PS)形成的共混薄膜中,仍能测量到很强的ISHE电压信号,并发现共混薄膜的自旋扩散长度和载流子迁移率相对于“纯”PBDTTT薄膜有显著的提高。他们通过综合性薄膜微结构测量发现,PBDTTT骨架链bundle在绝缘的PS基体中形成相互连通的纳米细丝网络,构成 贯穿 薄膜的快速电荷传导通路,可以解释共混薄膜更高的电荷和自旋传输能力。此外,还发现PBDTTT的自旋扩散长度具有弱的温度依存性,与基于自旋-轨道耦合的自旋弛豫机制一致。

这些结果清楚地表明,有机半导体的薄膜结构特性,如分子取向和堆积方式以及薄膜形貌等,对其自旋传输性能有关键性的影响。该工作对理解有机半导体自旋极化传输微观过程和机制有重要意义,并为寻找低成本、高性能有机自旋电子材料提供新途径。

该项研究获得国家自然科学基金项目以及国家重点研发项目的支持。

文章链接:https://pubs.acs.org/doi/10.1021/acsami.9b16602

图(a) Py/PBDTTT-C-T/Pt三明治结构器件上ISHE效应的产生,(b) 该器件所测的总电压谱(随磁场变化)及其退卷积。其中VLorentz对应于ISHE电压,(c) ISHE电压分别随PBDTTT-C-T介质层和PBDTTT/PS共混膜介质层厚度的变化。由此推算出聚合物薄膜不同的自旋扩散长度ls。

半导体( semiconductor)指常温下导电性能介于导体(conductor)与绝缘体(insulator)之间的材料。

超导体(英文名:superconductor),又称为超导材料,指在某一温度下,电阻为零的导体。在实验中,若导体电阻的测量值低于一个极小值,可以认为电阻为零。

半导体是指一种导电性可受控制,范围可从绝缘体至导体之间的材料。无论从科技或是经济发展的角度来看,半导体的重要性都是非常巨大的。今日大部分的电子产品,如计算机、移动电话或是数字录音机当中的核心单元都和半导体有着极为密切的关连。

人类最初发现超导体是在1911年,这一年荷兰科学家海克·卡末林·昂内斯(Heike Kamerlingh Onnes)等人发现,汞在极低的温度下,其电阻消失,呈超导状态。此后超导体的研究日趋深入,一方面,多种具有实用潜力的超导材料被发现,另一方面,对超导机理的研究也有一定进展。

扩展资料:

超导体基本特性:

一、完全导电性

完全导电性又称零电阻效应,指温度降低至某一温度以下,电阻突然消失的现象。完全导电性适用于直流电,超导体在处于交变电流或交变磁场的情况下,会出现交流损耗,且频率越高,损耗越大。

二、完全抗磁性

完全抗磁性又称迈斯纳效应,“抗磁性”指在磁场强度低于临界值的情况下,磁力线无法穿过超导体,超导体内部磁场为零的现象,“完全”指降低温度达到超导态、施加磁场两项 *** 作的顺序可以颠倒。

三、通量量子化

通量量子化又称约瑟夫森效应,指当两层超导体之间的绝缘层薄至原子尺寸时,电子对可以穿过绝缘层产生隧道电流的现象,即在超导体(superconductor)—绝缘体(insulator)—超导体(superconductor)结构可以产生超导电流。

参考资料来源:

百度百科—超导体

百度百科—半导体


欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/dianzi/9084798.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-04-24
下一篇 2023-04-24

发表评论

登录后才能评论

评论列表(0条)

保存