新型磁性半导体为反常霍尔效应(AHE)提供新视角

新型磁性半导体为反常霍尔效应(AHE)提供新视角,第1张

像电子这样的带电粒子在电场和磁场的影响下运动时,可以表现出相互影响的方式。例如,当磁场垂直于载流导体的平面施加时,内部流动的电子由于磁力而开始偏离侧面,很快,导体上出现了电压差。这种现象被称为"霍尔效应"。 然而,霍尔效应并不一定需要摆弄磁铁。事实上,它可以在具有长程磁秩序的磁性材料中直接观察到,如铁磁体。

科学家将这种现象命名为"反常霍尔效应"(AHE),它似乎是霍尔效应的一个近亲。然而,它的机制要更复杂一些。目前,最被接受的一种说法是,AHE是由电子能带的一种被称为"贝里曲率"的特性产生的,它是由电子的自旋和它在材料内部的运动之间的相互作用产生的,更常见的是"自旋-轨道相互作用"。

磁性排序对AHE来说是必要的吗?最近的一个理论表明并非如此。"理论上已经提出,即使在磁秩序消失的温度以上,也有可能出现大的AHE,特别是在具有低电荷载流子密度、电子间强交换作用和有限自旋手性的磁性半导体中,这与自旋方向相对于运动方向有关,"东京工业大学(Tokyo Tech)的副教授内田博士解释说,他的研究重点是凝聚态物理。

出于好奇,内田博士和他在日本的合作者决定对这一理论进行测试。在《科学进展》上发表的一项新研究中,他们研究了一种新的磁性半导体EuAs的磁特性,该材料只知道有一个奇特的扭曲三角形晶格结构,并观察到23K以下的反铁磁(AFM)行为(相邻的电子自旋排列在相反的方向)。此外,他们观察到,在有外部磁场的情况下,该材料的电阻随温度急剧下降,这种行为被称为"巨大的磁电阻"(CMR)。然而,更有趣的是,CMR甚至在23K以上也被观察到,在那里AFM的秩序消失了。人们很自然地理解,在EuAs中观察到的CMR是由稀释的载流子和局部Eu2+自旋之间的耦合引起的,这种耦合在很大的温度范围内持续存在。

然而,真正夺人眼球的是霍尔电阻率随温度的上升,它在70K的温度下达到顶峰,远远高于AFM排序温度,这表明在没有磁性排序的情况下,大型AHE也是可能的。为了了解是什么导致了这种非常规的AHE,研究小组进行了模型计算,结果显示,这种效应可以归因于三角晶格上的自旋簇对电子的倾斜散射,在这种"跳跃制度"下,电子不流动,而是在原子之间"跳跃"。

这些结果使我们在理解磁性固体内部电子的奇怪行为方面更近了一步。新发现有助于阐明三角晶格磁性半导体,并有可能打开一个新的研究领域,即针对稀释的载流子与非常规的自旋有序性和波动的耦合。

科学家使用光子来控制被困在二维半导体中的电荷的“基态”特性

研究人员发现,激光形式的光可以在正常的非磁性材料中触发某种形式的磁性。该实验由华盛顿大学和香港大学的科学家领导,于 4 月 20 日发表在《自然》杂志上。

据共同资深作者、华盛顿大学物理系和该系波音特聘教授徐晓东说,通过在这种细节和精度水平上控制和对齐电子自旋,该平台可以在量子模拟领域得到应用。材料科学与工程专业。

“在这个系统中,我们基本上可以使用光子来控制被困在半导体材料中的电荷的‘基态’特性——例如磁性,”Xu 说,他也是华盛顿大学清洁能源研究所和分子研究所的研究员。工程与科学研究所。 “这是为量子计算和其他应用开发某些类型的量子比特或‘量子比特’的必要控制水平。”

徐的研究团队带头进行了实验,他与共同资深作者、香港大学物理学教授王耀领导了这项研究,他的团队致力于研究支持结果的理论。参与这项研究的其他威斯康星大学教职员工是威斯康星大学物理学和材料科学与工程教授(同时在太平洋西北国家实验室担任联合任命)的共同作者 Di Xiao 和威斯康星大学化学教授兼主任 Daniel Gamelin分子工程材料中心。

该团队使用了二维化合物半导体 WSe2 和 WS2 的超薄薄片。研究人员将这两张纸叠起来形成了“莫尔超晶格”,这是一种由重复单元组成的堆叠结构。

像这样的堆叠薄片是量子物理学和材料研究的强大平台,因为超晶格结构可以将激子保持在适当的位置。激子是成对的“受激”电子及其相关的正电荷,科学家可以测量它们在不同超晶格配置中的性质和行为如何变化。

研究人员正在研究材料内的激子特性时,他们惊奇地发现光触发了正常非磁性材料内的关键磁性。激光提供的光子在激光束路径内“激发”了激子,这些激子在其他电子之间引发了一种长程相关性,它们的自旋都指向同一方向。

“就好像超晶格内的激子开始与空间分离的电子‘对话’,”徐说。 “然后,通过激子,电子建立了交换相互作用,形成了所谓的具有对齐自旋的‘有序状态’。”

研究人员在超晶格中目睹的自旋排列是铁磁性的特征,铁磁性是铁等材料固有的磁性形式。它通常不存在于 WSe2 和 WS2 中。徐说,莫尔超晶格中的每个重复单元本质上就像一个量子点来“捕获”电子自旋。可以相互“交谈”的被困电子自旋被认为是一种量子比特的基础,量子计算机的基本单元可以利用量子力学的独特特性进行计算。

在 2021 年 11 月 25 日发表在《科学》杂志上的另一篇论文中,Xu 和他的合作者在由超薄 CrI3 片形成的莫尔超晶格中发现了新的磁性,与 WSe2 和 WS2 不同,CrI3 具有固有的磁性,即使是单个原子片。堆叠的 CrI3 层形成交替的磁畴:一个是铁磁性的——自旋都在相同的方向上排列——另一个是“反铁磁性的”,其中自旋在超晶格的相邻层之间指向相反的方向,并且基本上“相互抵消, ”据徐说。这一发现还阐明了材料结构与其磁性之间的关系,这可能会推动计算、数据存储和其他领域的未来发展。

“它向你展示了隐藏在二维量子材料形成的莫尔超晶格中的磁性‘惊喜’,”徐说。 “除非你仔细观察,否则你永远无法确定你会找到什么。”

上图显示了光致铁磁性。以黄色显示的激光激发激子 - 电子(蓝色)及其相关正电荷的束缚对,也称为空穴(红色)。这种活动在莫尔超晶格内的其他空穴之间引起长程交换相互作用,使它们的自旋方向相同。


欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/dianzi/9086945.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-04-24
下一篇 2023-04-24

发表评论

登录后才能评论

评论列表(0条)

保存