芯片是如何制造的?

芯片是如何制造的?,第1张

芯片是怎么制作出来的如下:

一、芯片设计。

芯片属于体积小,但高精密度极大的产品。想要制作芯片,设计是第一环节。设计需要借助EDA工具和一些IP核,最终制成加工所需要的芯片设计蓝图。

二、沙硅分离。

所有的半导体工艺都是从一粒沙子开始的。因为沙子中蕴含的硅是生产芯片“地基”硅晶圆所需要的原材料。所以我们第一步,就是要将沙子中的硅分离出来。

三、硅提纯。

在将硅分离出来后,其余的材料废弃不用。将硅经过多个步骤提纯,已达到符合半导体制造的质量,这就是所谓的电子级硅。

四、将硅铸锭。

提纯之后,要将硅铸成硅锭。一个被铸成锭后的电子级硅的单晶体,重量大约为1千克,硅的纯度达到了99.9999%。

五、晶圆加工。硅锭铸好后,要将整个硅锭切成一片一片的圆盘,也就是我们俗称的晶圆,它是非常薄的。随后,晶圆就要进行抛光,直至完美,表面如镜面一样光滑。硅晶圆的直径常见的有8英寸(2mm)和12英寸(3mm),直径越大,最终单个芯片成本越低,但加工难度越高。

六、光刻。首先在晶圆上敷涂上三层材料。第一层是氧化硅,第二层是氮化硅,最后一层是光刻胶。再将设计完成的包含数十亿个电路元件的芯片蓝图制作成掩膜,掩膜可以理解为一种特殊的投影底片,包含了芯片设计蓝图,下一步就是将蓝图转印到晶圆上。这一步对光刻机有着极高的要求。紫外线会透过掩膜照射到硅晶圆上的光刻胶上,光刻过程中曝光在紫外线下的光刻胶被溶解掉,清除后留下的图案和掩膜上的一致。用化学物质溶解掉暴露出来的晶圆部分,剩下的光刻胶保护着不应该蚀刻的部分。蚀刻完成后,清除全部光刻胶,露出一个个凹槽。

七、蚀刻与离子注入。首先要腐蚀掉暴露在光刻胶外的氧化硅和氮化硅,并沉淀一层二氧化硅,使晶体管之间绝缘,然后利用蚀刻技术使最底层的硅暴露出来。然后把硼或磷注入到硅结构中,接着填充铜,以便和其他晶体管互连,然后可以在上面再涂一层胶,再做一层结构。一般一个芯片包含几十层结构,就像密集交织的高速公路。

经过上述流程,我们就得到了布满芯片的硅晶圆。之后用精细的切割器将芯片从晶圆上切下来,焊接到基片上,装壳密封。之后经过最后的测试环节,一块块芯片就做好了。

一般情况下,ND<NC或NA <NV;费米能级处于禁带之中。当ND≥NC或NA≥NV时,EF将与EC或EV重合,或进入导带或价带,此时的半导体称为简并半导体。也即,简并半导体是指:费米能级位于导带之中或与导带重合;费米能级位于价带之中或与价带重合。

选取EF = EC为简并化条件,得到简并时最小施主杂质浓度:

选取EF = Ev为简并化条件,得到简并时最小受主杂质浓度:

半导体发生简并时:

(1)ND ≥ NC;NA ≥ NV;

(2)ΔED越小,简并所需杂质浓度越小。

(3)简并时施主或受主没有充分电离。

(4)发生杂质带导电,杂质电离能减小,禁带宽度变窄。

扩展资料

半导体芯片的制造过程可以分为沙子原料(石英)、硅锭、晶圆、光刻,蚀刻、离子注入、金属沉积、金属层、互连、晶圆测试与切割、核心封装、等级测试、包装等诸多步骤,而且每一步里边又包含更多细致的过程。

1、沙子:硅是地壳内第二丰富的元素,而脱氧后的沙子(尤其是石英)最多包含25%的硅元素,以二氧化硅(SiO2)的形式存在,这也是半导体制造产业的基础。

2、硅熔炼:12英寸/300毫米晶圆级,下同。通过多步净化得到可用于半导体制造质量的硅,学名电子级硅(EGS),平均每一百万个硅原子中最多只有一个杂质原子。此图展示了是如何通过硅净化熔炼得到大晶体的,最后得到的就是硅锭。

3、单晶硅锭:整体基本呈圆柱形,重约100千克,硅纯度99.9999%。

4、硅锭切割:横向切割成圆形的单个硅片,也就是我们常说的晶圆(Wafer)。

5、晶圆:切割出的晶圆经过抛光后变得几乎完美无瑕,表面甚至可以当镜子。

6、光刻胶(Photo Resist):图中蓝色部分就是在晶圆旋转过程中浇上去的光刻胶液体,类似制作传统胶片的那种。晶圆旋转可以让光刻胶铺的非常薄、非常平。

7、光刻:光刻胶层随后透过掩模(Mask)被曝光在紫外线(UV)之下,变得可溶,期间发生的化学反应类似按下机械相机快门那一刻胶片的变化。掩模上印着预先设计好的电路图案,紫外线透过它照在光刻胶层上,就会形成微处理器的每一层电路图案。

8、溶解光刻胶:光刻过程中曝光在紫外线下的光刻胶被溶解掉,清除后留下的图案和掩模上的一致。

9、蚀刻:使用化学物质溶解掉暴露出来的晶圆部分,而剩下的光刻胶保护着不应该蚀刻的部分。

10、清除光刻胶:蚀刻完成后,光刻胶的使命宣告完成,全部清除后就可以看到设计好的电路图案。

再次光刻胶:再次浇上光刻胶(蓝色部分),然后光刻,并洗掉曝光的部分,剩下的光刻胶还是用来保护不会离子注入的那部分材料。

11、离子注入(Ion Implantation):在真空系统中,用经过加速的、要掺杂的原子的离子照射(注入)固体材料,从而在被注入的区域形成特殊的注入层,并改变这些区域的硅的导电性。经过电场加速后,注入的离子流的速度可以超过30万千米每小时。

12、清除光刻胶:离子注入完成后,光刻胶也被清除,而注入区域(绿色部分)也已掺杂,注入了不同的原子。注意这时候的绿色和之前已经有所不同。

13、晶体管就绪:至此,晶体管已经基本完成。在绝缘材(品红色)上蚀刻出三个孔洞,并填充铜,以便和其它晶体管互连。

14、电镀:在晶圆上电镀一层硫酸铜,将铜离子沉淀到晶体管上。铜离子会从正极(阳极)走向负极(阴极)。

15、铜层:电镀完成后,铜离子沉积在晶圆表面,形成一个薄薄的铜层。

16、抛光:将多余的铜抛光掉,也就是磨光晶圆表面。

17、金属层:晶体管级别,六个晶体管的组合,大约500纳米。在不同晶体管之间形成复合互连金属层,具体布局取决于相应处理器所需要的不同功能性。芯片表面看起来异常平滑,但事实上可能包含20多层复杂的电路,放大之后可以看到极其复杂的电路网络,形如未来派的多层高速公路系统。

18、晶圆测试:内核级别,大约10毫米/0.5英寸。图中是晶圆的局部,正在接受第一次功能性测试,使用参考电路图案和每一块芯片进行对比。

19、晶圆切片(Slicing):晶圆级别,300毫米/12英寸。将晶圆切割成块,每一块就是芯片的内核(Die)。

20、丢弃瑕疵内核:晶圆级别。测试过程中发现的有瑕疵的内核被抛弃,留下完好的准备进入下一步

21、封装

参考资料来源:百度百科-半导体

参考资料来源:百度百科-简并半导体


欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/dianzi/9089026.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-04-24
下一篇 2023-04-24

发表评论

登录后才能评论

评论列表(0条)

保存