半导体工艺节点是什么——你看到的7nm真的是7nm吗?

半导体工艺节点是什么——你看到的7nm真的是7nm吗?,第1张

我们在 ExtremeTech 上讨论了很多半导体工艺节点,但是从技术上讲,我们并不经常提及什么是半导体工艺节点 。 随着 Intel 的 10nm 节点进入生产阶段,对于半导体工艺节点的困惑越来越多了,而且对于台积电和三星的技术是不是优于英特尔(以及如果拥有的优势,他们拥有多少优势),也打上了问号。

半导体工艺节点通常以数字命名,后跟纳米的缩写:32nm,22nm,14nm等。CPU 的任何功能与节点名称之间没有固定的客观联系。半导体工艺节点的命名方式也并非总是如此,在大约 1960s-1990s ,节点是根据门的长度来命名的。IEEE 的这张图显示了这种关系:

长期以来,栅极长度(晶体管栅极的长度)和半间距(芯片上两个相同特征,如栅级,之间的距离的一半)与过程节点名称相匹配,但最后一次是 1997年 。半间距又连续几代与节点名匹配,但在实际意义上两者并没有什么关系。实际上,特征尺寸和芯片实际上的样子匹配,已经是很长很长时间之前的事情了。

如果我们达到几何比例缩放要求以使节点名称和实际特征尺寸保持同步,那么六年前我们就该将生产线降至 1nm 以下(这怎么可能嘛)。我们用来表示每个新节点的数字只是代工厂为了宣传选取的数字。早在2010年,ITRS(国际半导体技术发展蓝图,稍后对此组织进行详细介绍)把在每个节点上应用的技术集称为“等效扩展”(而不是几何扩展)。当我们接近纳米级的极限时,宣传可能会开始使用埃而不是纳米,或者可能会使用小数点。当我开始在这个行业工作时,通常会看到记者提到微米而不是纳米的工艺节点,例如 0.18微米或 0.13微米,而不是 180nm 或 130nm。

半导体制造涉及大量的资本支出和大量的长期研究。从论文采用新技术到大规模商业化生产之间的平均时间间隔为10到15年。几十年前,半导体行业认识到,如果存在针对节点引入的通用路线图以及这些节点所针对的特征尺寸,这对每个电子工业的参与方都是有利的。这将允许生产线上的不同位置的厂商同时克服将新节点推向市场遇到的难题。多年来,ITRS(国际半导体技术路线图)一直在发布该行业的总体路线图。这些路线图长达15年之久,为半导体市场设定了总体目标。

ITRS于1998-2015年发布。从2013年至2014年,ITRS重组为ITRS 2.0,他们很快意识到传统的推进方法遇到了理论创新的瓶颈,新组织的任务目标是为大学、财团和行业研究人员提供“未来的主要参考方向,以激发技术各个领域的创新”,这个目标也要求新组织大幅扩展其覆盖范围和覆盖范围。ITRS就此宣布退休了,成立了一个新的组织,称为IRDS(国际设备和系统路线图),其研究的范围大得多,涉及更广泛的技术。

范围和重点的转移反映了整个代工行业正在发生的事情。我们停止将栅极长度或半间距与节点大小绑定的原因是,它们要么停止缩小,要么缩小的速率减慢。作为替代方案,公司已经集成了各种新技术和制造方法,从而继续进行节点缩放。在40 / 45nm,GF和TSMC等公司推出了浸没式光刻技术。在32nm处引入了双图案。后栅极制造是28nm的功能。FinFET是由Intel在22nm处引入的,而其他公司则是在14 / 16nm节点处引入的。

公司有时会在不同的时间推出功能。AMD和台积电推出了40 / 45nm浸没式光刻技术,但英特尔等到32nm才使用该技术,并选择首先推出双图案。GlobalFoundries和台积电开始在32 / 28nm使用更多的双图案。台积电在28nm处使用后栅极构造,而三星和GF使用先栅极技术。但是,随着进展变得越来越慢,我们已经看到公司更加依赖于营销,拥有更多定义的“节点”。像三星这样的公司,没有像以前一样瀑布式下降节点名字(90、65、45),而是给不同的工艺节点起了数字部分相同的名字:

我认为您可以吐槽该产品名称不明不白,因为除非您有清晰的图表,否则很难分辨哪些流程节点是早期节点的演变变体。

尽管节点名称不 依赖 于任何特征尺寸,并且某些特征尺寸已停止缩小,但半导体制造商仍在寻找改善关键指标的方法。这是真正的技术进步。但是,由于现在很难获得性能上的优势,并且更小的节点需要更长的开发时间,因此公司正在尝试更多所谓的改进实验。例如,三星正在准备比以前更多的节点名称。那是某种营销策略,而不是他们真的能做出来多么超前的改进。

因为英特尔10纳米制程的制造参数非常接近台积电和三星用于7纳米制程的值。下面的图表来自WikiChip,但它结合了英特尔10nm节点的已知功能尺寸和台积电和三星7nm节点的已知功能尺寸。如您所见,它们非常相似:

delta 14nm / delta 10nm列显示了每个公司从其上一个节点开始将特定功能缩小的程度。英特尔和三星的最小金属间距比台积电更严格,但是台积电的高密度SRAM单元比英特尔小,这可能反映了台湾代工厂的不同客户的需求。同时,三星的单元甚至比台积电的单元还要小。总体而言,英特尔的10nm工艺达到了许多关键指标,台积电和三星都将其称为7nm。

由于特定的设计目标,单个芯片可能仍具有偏离这些尺寸的功能。制造商提供的这些数字是给定节点上的典型预期实现方式,不一定与任何特定芯片完全匹配。

有人质疑英特尔的10nm +工艺(用于Ice Lake)在多大程度上达到了这些宣传的指标(我相信这些数字是针对Cannon Lake发布的)。的确,英特尔10纳米节点的预期规格可能会略有变化,但14纳米+也是14纳米的调整,10nm+肯定比14nm工艺有非常大的改进。英特尔已经表示,一定会把10nm工艺节点的晶体管密度相对14nm增加2.7倍作为目标,因此我们将推迟任何有关10nm +可能略有不同的猜测。

理解新流程节点的含义的最佳方法是将其视为总括性术语。当一家代工厂商谈论推出一个新的流程节点时,他们所说的其实是:

“我们创建了具有更小特征和更严格公差的新制造工艺。为了实现这一目标,我们集成了新的制造技术。我们将这组新的制造技术称为流程节点,因为我们想要一个总括的术语,向大众传递我们改进了某些具体的工艺参数。”

关于该主题还有其他问题吗?将它们放到下面,我会回答他们。

一、半导体中名词“wafer”“chip”“die”中文名字和用途

①wafer——晶圆

wafer 即为图片所示的晶圆,由纯硅(Si)构成。一般分为6英寸、8英寸、12英寸规格不等,晶片就是基于这个wafer上生产出来的。晶圆是指硅半导体集成电路制作所用的硅晶片,由于其形状为圆形,故称为晶圆;在硅晶片上可加工制作成各种电路元件结构,而成为有特定电性功能的集成电路产品。

②chip——芯片

一片载有Nand Flash晶圆的wafer,wafer首先经过切割,然后测试,将完好的、稳定的、足容量的die取下,封装形成日常所见的Nand Flash芯片(chip)。芯片一般主要含义是作为一种载体使用,并且集成电路经过很多道复杂的设计工序之后所产生的一种结果。

③die——晶粒

Wafer上的一个小块,就是一个晶片晶圆体,学名die,封装后就成为一个颗粒。晶粒是组成多晶体的外形不规则的小晶体,而每个晶粒有时又有若干个位向稍有差异的亚晶粒所组成。晶粒的平均直径通常在0.015~0.25mm范围内,而亚晶粒的平均直径通常为0.001mm数量级。

二、半导体中名词“wafer”“chip”“die”的联系和区别

①材料来源方面的区别

以硅工艺为例,一般把整片的硅片叫做wafer,通过工艺流程后每一个单元会被划片,封装。在封装前的单个单元的裸片叫做die。chip是对芯片的泛称,有时特指封装好的芯片。

②品质方面的区别

品质合格的die切割下去后,原来的晶圆就成了下图的样子,就是挑剩下的Downgrade Flash Wafer。这些残余的die,其实是品质不合格的晶圆。被抠走的部分,也就是黑色的部分,是合格的die,会被原厂封装制作为成品NAND颗粒,而不合格的部分,也就是图中留下的部分则当做废品处理掉。

③大小方面的区别

封装前的单个单元的裸片叫做die。chip是对芯片的泛称,有时特指封装好的芯片。cell也是单元,但是比die更加小 cell <die<chip。

扩展资料

一、半导体基本介绍

半导体指常温下导电性能介于导体与绝缘体之间的材料。半导体在消费电子、通信系统、医疗仪器等领域有广泛应用。如二极管就是采用半导体制作的器件。无论从科技或是经济发展的角度来看,半导体的重要性都是非常巨大的。

今日大部分的电子产品,如计算机、移动电话或是数字录音机当中的核心单元都和半导体有着极为密切的关连。常见的半导体材料有硅、锗、砷化镓等,而硅更是各种半导体材料中,在商业应用上最具有影响力的一种。

半导体芯片的制造过程可以分为沙子原料(石英)、硅锭、晶圆、光刻,蚀刻、离子注入、金属沉积、金属层、互连、晶圆测试与切割、核心封装、等级测试、包装等诸多步骤,而且每一步里边又包含更多细致的过程。

姓名:李沈轩    学号:20181214373    学院:广研院

【原文链接】 7nm 制程工艺到底指什么? - 知乎 (zhihu.com)

【嵌牛导读】本文介绍了什么是7nm制程工艺

【嵌牛鼻子】7nm制程工艺

【嵌牛提问】7nm 制程工艺到底指什么?

【嵌牛正文】

随着消费电子产品市场的火热,就算是科技小白,对于7nm 制程工艺这个词也是有所耳闻的,那么7nm 制程工艺到底指的是什么呢 ?

学过半导体器件物理或者微电子相关专业的同学,应该知道,几nm 工艺制程指的是MOS 晶体管的源和漏的距离,也就是Gate Length

Gate Length 确实是决定MOSFET 的关键尺寸,制程节点以0.7倍的速度减小,单位面积芯片上晶体管数量以2倍的速度增加。下图中可以看到Gate length的缩小进程,1990年以前Gate length 的减小几乎完全线性,1990年以后减小速度更快,0.72x/gen, 并且不再完全线性。

所以,用Gate length 来定义制程工艺节点是合理的也是有意义的,那么制程节点命名和实际Gate length 真的是一致的吗?

答案并不是,从0.35um 制程工艺以后,制程工艺节点和Gate length 以及half pitch 就已经不再完全相符,只是工艺节点和Gate length 都是同步的减小,晶体管的密度同步的增加,而且Gate length 一直都比工艺节点小,所以认为工艺节点的减小就是Gate length 的减小也是可以的,工艺节点可以很好地用来衡量工艺的先进程度。

但是,这种状况在22nm 以下制程时开始变得眼花缭乱,由于3D立体结构FINFET的出现以及各厂商的营销宣传,英特尔以外的厂商在工艺制程的命名上用尽心机,三星和台积电也就是在此时完成了名义上对英特尔的超越。

例如在14nm 工艺节点上,英特尔的14nm比其他厂商的14nm/16nm 在任何维度上都要优越不少,但是并不妨碍其他厂商在商业上取得巨大回报,尝到甜头后的其他厂商在后续工艺节点命名宣传上愈发不可收拾,工艺制程节点开始失去其应有的意义。

面对这种混乱状况,时任英特尔工艺架构和集成总监的Mark Bohr 还一度公开为自家产品打抱不平,声称英特尔10nm工艺的栅极间距是54nm,是同时代10nm最强。

此外,他还发表了一篇名为“让我们清理半导体工艺命名的混乱”的文章。在这篇文章中,Bohr直指业界在半导体工艺命名上的混乱状态,并给出了一个衡量半导体工艺水平的公式。显然,这里针对的就是三星和台积电。

由于制程工艺衡量的混乱,各厂商工艺制程数字已经不能完全衡量制程水平了,也就有了各种不同工艺制程间性能的争议的口水战:

突破常理?研发4年,英特尔的10nm芯片工艺,比台积电的7nm还要强www.baidu.com

在这场争端中,台积电和三星确实有些胜之不武,但是凭借在营销和研发上的双双发力,在后续的先进制程工艺水平上还是完成了对英特尔的实际反超,英特尔也收获了“牙膏厂”的称号。

至此,关于工艺制程的命名有了一个比较明确的定义:

The term " ? nm" is simply a commercial name for a generation of a certain size and its technology, as opposed to gate length or half pitch.

也就是“几nm”制程工艺仅仅只是一个代表某种特定尺寸和技术的商业名称,并不指代实际的 Gate length 或者 half pitch。

类似于中国白酒行业的年份酒,比如5年、10年、30年这样的年份标注,并不是真实窖藏时间,只是一种标识。

FINFET 让晶体管从平面转向了3D立体结构,也就需要更多的参数来衡量晶体管的特征尺寸。

比如 Fin 的高度,Fin 的宽度,Fin 间距 (Fin Pitch),Gate length,Gate width

此外,业界对于工艺节点的描述又用到了两个特征尺寸,Gate pitch(栅极间距)和Interconnect pitch(内连接间距,最小金属间距MMP,M1 pitch,即第一个金属层的pitch 尺寸,第一个金属层是金属层中尺寸最小的),这两个尺寸围成的方框可以用来衡量一个晶体管的面积(但是方框区域并非就是一个晶体管区域面积),方框面积越小,晶体管的密度也就可以做得越高。

比如上图中,台积电的7nm 制程工艺,Gate pitch 是57nm,Interconnect pitch 是40nm不难注意到,英特尔的10nm 制程工艺的 Gate pitch/ Interconnect pitch和台积电的7nm 工艺是差不多的,这也是最终两者的晶体管密度和性能差不多的原因。所以台积电的7nm 制程和英特尔的10nm 制程其实是对等的产品,而不是两代产品的差异,由于命名的差异让台积电的7nm 工艺更加引人瞩目。

下图是 Gate Pitch 和Metal pitch 的示意图,Metal pitch的大小并不是一个完整晶体管的实际高度。

了解完7nm 制程的特征尺寸,看起来其实7nm 制程工艺并没有我们想象的那么小,甚至和7nm这个长度完全没有什么关系,那么7nm 制程工艺的晶体管中就没有特征尺寸在7nm 左右的位置吗?

答案是:还真有。

以下是各厂商7nm 制程工艺的特征尺寸和一些工艺参数,我们可以发现其中有两个比较小的特征尺寸,一个是Fin的宽度只有6nm, 另一个是 Gate length 在8~10nm

那么7nm 是不是指Fin 的宽度呢?其实早在22nm Finfet 制程工艺的时候,Fin 的宽度就已经做到了8nm,但是由于实际每一个晶体管包含多个Fin, 所以Fin 的宽度并不能作为衡量晶体管密度的特征参数;Gate length也是,Gate length虽然很小,但是如果Gate 间距很大,单位面积可以容纳的晶体管数目依然很少。

下图是实际Finfet 中Fin 的TEM图片,Fin 的顶端宽度约为8nm:

7nm 制程工艺仅仅只是一个代表某种特定尺寸和技术的商业名称,并不指代实际的 Gate length 或者 half pitch。每个厂商对于7nm 制程工艺都有不同的Gate pitch 和 Interconnect pitch的定义设计,不同厂商相同制程工艺的产品也不完全具有可比性。


欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/dianzi/9089881.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-04-24
下一篇 2023-04-24

发表评论

登录后才能评论

评论列表(0条)

保存