5nm是EUV(极紫外线)光刻机能实现的目前最先进芯片制程工艺,也是智能手机厂商争抢的宣传卖点,进入2020年下半年后,苹果A14、麒麟9000、骁龙888等5nm工艺芯片相继粉墨登场。
然而,公开的信息显示,无论A14、麒麟9000,还是骁龙888,均被曝出芯片的实际功耗发热与厂商宣传的美好相差甚远,一时间,“5nm芯片集体翻车”的话题成为网络热点。
一、骁龙888功耗等于低压酷睿?
根据AI财经社的报道,5nm芯片最让人诟病的,是性能虽然有所提升,但功耗却比7nm的明显增加,这其中表现最差的就是骁龙888,被调侃为“火龙888”。
数码评测媒体极客湾对骁龙888、骁龙865、骁龙855测试的功耗数据表明,单核功耗上,骁龙865最低,为2.3瓦,其次是骁龙855的2.4瓦,骁龙888最高,达3.3瓦,相比骁龙865高了1瓦,高出幅度达43.5%。多核功耗方面,最低的依然是骁龙865,为5.9瓦,其次是骁龙855的6.1瓦,骁龙888依然落在最后,功耗高达7.8瓦,是骁龙865的1.32倍。具体见下图。
骁龙888多核功耗高达7.8瓦是个什么概念?英特尔第11代低压酷睿i7处理器的功耗在7——15瓦,可用于超轻轻薄笔记本电脑(在无风扇散热时,功耗锁定为7瓦)。也就是说,骁龙888的多核功耗已经相当于一颗第11代低压酷睿i7处理器,但需要明确的是,低压酷睿i7处理器采用的是10nm工艺制程,落后台积电、三星的5nm不少。
英特尔处理器采用复杂指令集,理论上相比采用精简指令集的骁龙888更为耗电,但骁龙888在占据工艺先进至少一代的优势下,功耗竟然相当于英特尔低压酷睿。不知道英特尔看到这里会是什么心情。
骁龙888功耗猛增,最直观的体验就是,手机如果运行较大型的游戏,发热就比较明显。极客湾的数据表明,在某款游戏的测试中,玩了20分钟后,小米11背面温度达到了48℃,而搭载骁龙865的小米10在相同的测试环境下,温控表现更好只有41℃。
爱范儿对搭载A14芯片的iPhone12运行《原神》游戏测试表明,20分钟后,手机背面最高温度达到47℃,接近小米11。
5nm的芯片在制程工艺上更先进,为何功耗表现却落后于7nm的芯片?答案是和芯片内部的晶体管漏电有直接关系。
二、为何晶体管漏电是元凶?
A14、骁龙和麒麟等手机SoC芯片属于数字集成电路,而随着制造工艺的不断进步,集成电路的功耗越来越复杂,但总体可分为电路逻辑状态转换产生的动态功耗,以及CMOS晶体管各种泄露电流产生的静态功耗(又称漏电流功耗)。
在芯片进入深亚微米工艺时代之前,动态功耗一直是芯片设计关注的焦点,但在进入深亚微米工艺时代之后,动态功耗在总功耗中的比例越来越小,静态功耗的比例则越来越大。
当芯片制造工艺进入纳米时代后,漏电流功耗对整个功耗的影响已经变得非常显著。有研究表明,在90nm工艺的电路中,静态功耗可以占到总功耗的40%以上。
究其原因,是因为集成电路每一代制造工艺的进步,都是以缩短CMOS晶体管的沟道长度为目标,7nm工艺指的就是指沟道长度。沟道长度不断缩短,使得电源电压、阈值电压、栅极氧化层厚度等工艺参数也在不断地按比例缩小,直接导致短沟道效应(SCE)、栅极隧穿电流、结反偏隧穿电流等漏电流机制越来越显著,表现为芯片漏电流功耗不断上升。
有研究表明,当晶体管的沟道长度从130nm缩短到90nm时,即缩小30.77%,漏电流功耗上升大约39.25%,但缩短到45nm,即缩小65.4%时,漏电流功耗上升大约273.28%(具体见下图)。
也就是说,漏电流功耗和缩小的沟道长度之间不是简单的比例关系,即使沟道长度缩短一点,漏电流功耗也会有一个数量级的增长,而且随着沟道长度越来越短,漏电流功耗增长越来越快。
如果复盘芯片制造历史,会发现漏电流功耗曾长期困扰英特尔、三星和台积电等制造大厂。
三、台积电为何被称台漏电?
长期以来,芯片制造大厂一直在和漏电流功耗作斗争,每有进展,都是值得大书特书的新闻,比如英特尔。
相反,台积电2010年刚推出28nm工艺制程时,由于技术不成熟,漏电流功耗高,导致芯片的功耗大到难以接受,被市场调侃为“台漏电。”有长达6年时间,都摘不掉这顶帽子。
在当时,如何压制漏电流功耗几乎可以决定芯片工艺制程赛道上选手的身位。彼时,英特尔还是制造技术大拿,率先通过Gate-last技术压制了漏电流功耗,台积电则走了一些弯路,沿用IBM的Gate-first 技术,但效果不佳,在28nm上栽了跟斗,后在蒋尚义的主导下,改走英特尔Gate-last技术路线,才算解决漏电流功耗过高难题。
2011年第4季度,历经波折后,台积电终于量产成熟可靠的28nm制程。三星本来在32纳米制程也采用Gate-first 技术,但后来在28 纳米制程时,快速切换到Gate-Last 路线,之后的14纳米也基于Gate-Last。
梁孟松
据说,三星是通过台积电“叛将”梁孟松解决漏电流功耗问题,成功缩短与台积电的工艺差距。结果引发台积电起诉梁孟松,迫使后者离开三星半导体,辗转到中芯国际。
由此可见,压制晶体管漏电流功耗有多重要。
四、为何老迈的技术不退休?
台积电、三星和英特尔之所以能压制漏电流功耗问题,主要原因是采用了创新的鳍式场效应晶体管(简称FinFET,见附图),以替代传统的平面式晶体管。但由加州大学伯克利分校胡正明教授发明的鳍式场效应晶体管(FinFET),通过局部技术改良,从28nm工艺制程一直沿用至今,可谓发挥到了极限。随着制程工艺进入EUV时代,漏电流功耗重新成为挑战。
在7nm时,老迈的鳍式场效应晶体管(FinFET)技术就应该谢幕了,由环绕栅极晶体管(GAAFET)接替。但由于技术风险和成本压力,大厂们在5nm时代仍不得不使用老迈的鳍式场效应晶体管(FinFET)技术,结果就是如前文所述,5nm的芯片漏电流功耗飙涨,在功耗上集体翻车,几乎消耗掉制程工艺进步的红利。也可以看出,芯片制造技术每往前跨一步,其实都极为不易。
SCI更准确。SCI指包含镜面反射光方式,一般用于那些研究颜色本身属性而不关心颜色所附着的样品表面光泽度的厂家,如油漆涂料厂等。SCE指不包含镜面反射光方式,一般适用于那些直接被人观测到的,要求测量结果和目视非常接近的样品,如家电外壳等。
SCI是指包含镜面反射光测量颜色的表达方法;SCE是指排除镜面反射光的测量颜色的方法;需要明白两种测试方法的区别:在使用SCI模式时候,测量过程中镜面反射光和漫射光仪器包含进去,这样测试的数据只物体整体客观的颜色,而与物体表面条件无关。
扩展资料:
科学引文索引以布拉德福(S. C. Bradford)文献离散律理论、以加菲尔德(E. Garfield)引文分析理论为主要基础。
通过论文的被引用频次等的统计,对学术期刊和科研成果进行多方位的评价研究,从而评判一个国家或地区、科研单位、个人的科研产出绩效,来反映其在国际上的学术水平。因此,SCI是目前国际上被公认的最具权威的科技文献检索工具。
科学引文索引以其独特的引证途径和综合全面的科学数据,通过统计大量的引文,然后得出某期刊某论文在某学科内的影响因子、被引频次、即时指数等量化指标来对期刊、论文等进行排行。被引频次高。
说明该论文在它所研究的领域里产生了巨大的影响,被国际同行重视,学术水平高。由于SCI收录的论文主要是自然科学的基础研究领域。
所以SCI指标主要适用于评价基础研究的成果,而基础研究的主要成果的表现形式是学术论文。所以,如何评价基础研究成果也就常常简化为如何评价论文所承载的内容对科学知识进展的影响。
参考资料来源:百度百科-SCI
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)