2)晶格振动散射
声学波和光波、声波散射、光波散射
3)其他因素引起的散射
等同的能谷间散射、中性杂质散射、位错散射
中国科学院半导体研究所李树深研究员、夏建白院士在《2006科学发展报告》发表了一篇题为“激子和相关现象”的文章。文章指出,早在20世纪30年代,科学家就对激子开始了研究。20世纪60年代以前,人们对激子的研究主要集中在理论方面。激光技术发明以后,大大促进了人们对激子的实验研究。特别是飞秒激光技术日益完善,大大促进了人们对激子超快相干过程的研究。20世纪70年代以前,人们对激子的研究仅限于体材料。随着低维材料生长与加工技术的进步,20世纪的最后20年,低维材料中激子特性的研究成为主流。
信息产业迅速发展,已经成为支柱产业之一。光电子是信息产业中的重要领域。在有源发光器件中,激子发光占据重要地位。器件应用的牵引作用,也极大地促进了人们对激子的广泛研究。
作者着重对未来重要研究方向及其可能进展进行了展望: 性质
受各种波长发光器件(特别是半导体激光器)需求的市场牵引,近20年来,人们对多种半导体材料(包括低维复合材料)进行了广泛研究。理论与实验取得了基本一致的研究成果。预计在未来10到20年时间范围内,随着纳米加工技术的进一步提高,各种新型微结构将会源源不断的涌现出来。这些新型人工微结构中的激子线性和非线性发光特性的研究仍将是热点研究内容之一。理论与实验的紧密结合,将对新型发光器件的研制提供有力保障。 动力学
对不同种类与结构的材料,激子寿命在皮秒到微秒的范围内。在激子形成后,激子的动力学行为是到未来若干年内热点研究课题之一。利用超短脉冲技术,人们可以对特定结构内激子态进行有效调控。制备各种理想激子态,并对其进行相干控制,是人们多年来的追求目标,对基础和应用研究都有重要意义。 量子信息
量子信息是发展起来的新型交叉学科,她是将20世纪取得巨大成就的经典信息理论与量子力学相结合后的产物。固态量子信息是量子信息未来的发展方向,是量子信息走向实用化的必然目标。人们设想激子态可以作为量子信息的有效载体。通过不同激子态之间的纠缠,可以对激子携带的量子信息进行交换、传递和处理。人们已经对单个量子点中不同磁激子之间用光激发诱导实现了激子之间的量子纠缠。距离相近的两个量子点可以形成所谓的量子点分子,在这种结构中激子的纠缠特性已经有了理论研究。用光学方法,人们已经对单个量子点内双激子进行了量子逻辑门 *** 作。但无论从理论或实验角度来看,激子在固态量子信息中的应用研究还刚刚开始。 波色
对低维半导体结构中的激子的波色-爱因斯坦凝聚研究是未来的研究热点之一。关于固体中激子的波色-爱因斯坦凝聚现象还有许多争论,理论方法还在发展中。随着量子信息研究热潮的兴起,人们提出激子可以作为固态量子信息的载体之一,低维半导体中激子波色-爱因斯坦凝聚提供了固态量子信息处理的理想基态。(摘自科学出版社出版的《2006科学发展报告》)
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)