异构集成 (Heterogeneous Integration)通常和单片集成电路(monolithic)相对应,我们常见的芯片都是单片集成电路,它们属于同构集成(homogeneous Integration),意味着在同一种材料上制作出所有元件。这曾经是杰克•基尔比(Jack Kilby)的伟大梦想,并最终成为现实,进而推动了信息技术的巨大进步,对人类文明的进步也产生重大影响。
异构集成和同构集成二者并不相互排斥,所有异构集成的单元都是同构集成。
异构集成 (Heterogeneous Integration)准确来讲,全称为异构异质集成,异构集成可看作是其汉语的简称,这里,我们将其分为异构(HeteroStructure)集成和异质(HeteroMaterial)集成两大类。
异构集成
异构集成( HeteroStructure Integration)主要指将多个不同工艺节点单独制造的芯片封装到一个封装内部,以增强功能性和提高性能,可以对采用不同工艺、不同功能、不同制造商制造的组件进行封装。例如将不同厂商的7nm、10nm、28nm、45nm的小芯片通过异构集成技术封装在一起。
这里主要以硅材质的芯片为主,工程师可以像搭积木一样,在芯片库里将不同工艺节点的Chiplet小芯片通过异构集成技术组装在一起。
异质集成
异质集成( HeteroMaterial Integration)是指将不同材料的半导体器件集成到一个封装内,可产生尺寸小、经济性好、灵活性高、系统性能更佳的产品。
如将Si、GaN、SiC、InP生产加工的芯片通过异质集成技术封装到一起,形成不同材料的半导体在同一款封装内协同工作的场景。
过去,出于功耗、性能、成本等因素的考虑,集成首先在单片上实施,例如SoC。近些年,由于摩尔定律日益趋缓,单片集成的发展受到了一些影响。得益于先进封装与芯片堆叠技术的创新,设计人员可以将系统集成至单个封装内形成SiP,这就推进了异构异质集成的发展。
今天,Heterogeneous Integration 异构异质集成主要是指封装层面(Package Level)的集成,其概念出现的历史并不长,是在近十年间随着先进封装技术的兴起而日益受到业界的重视,并逐渐发展为电子系统集成中最受关注的环节。
经过近十年的发展,二维电子学已经取得了巨大进步,但在大面积单晶制备、关键器件工艺、与主流半导体技术兼容性等方面仍存在挑战。
南京大学电子科学与工程学院王欣然教授课题组聚焦上述问题,研究突破二维半导体单晶制备和异质集成关键技术,为后摩尔时代集成电路的发展提供了新思路。相关研究成果近期连续发表在Nature Nanotechnology上。
半导体单晶材料是微电子产业的基石。与主流的12寸单晶硅晶圆相比,二维半导体的制备仍停留在小尺寸和多晶阶段,开发大面积、高质量的单晶薄膜,是迈向二维集成电路的第一步。然而,二维材料的生长过程中,数以百万计的微观晶粒随机生成,只有控制所有晶粒保持严格一致的排列方向,才有可能获得整体的单晶材料。
蓝宝石是半导体工业界广泛使用的一种衬底,在规模化生产、低成本和工艺兼容性方面具有突出的优势。合作团队提出了一种方案,通过改变蓝宝石表面原子台阶的方向,人工构筑了原子尺度的“梯田”。
利用“原子梯田”的定向诱导成核机制,实现了TMDC的定向生长。基于此原理,团队在国际上首次实现了2英寸MoS2单晶薄膜的外延生长。
得益于材料质量的提升,基于MoS2单晶制备的场效应晶体管迁移率高达102.6 cm2/Vs,电流密度达到450 μA/μm,是国际上报道的最高综合性能之一。同时,该技术具有良好的普适性,适用于MoSe2等其他材料的单晶制备,该工作为TMDC在集成电路领域的应用奠定了材料基础。
大面积单晶材料的突破使得二维半导体走向应用成为可能。在第二个工作中,电子学院合作团队基于第三代半导体研究的多年积累,结合最新的二维半导体单晶方案,提出了基于MoS2 薄膜晶体管驱动电路、单片集成的超高分辨Micro-LED显示技术方案。
Micro-LED是指以微米量级LED为发光像素单元,将其与驱动模块组装形成高密度显示阵列的技术。与当前主流的LCD、OLED等显示技术相比,Micro-LED在亮度、分辨率、能耗、使用寿命、响应速度和热稳定性等方面具有跨代优势,是国际公认的下一代显示技术。然而,Micro-LED的产业化目前仍面临诸多挑战。
首先,小尺寸下高密度显示单元的驱动需求难以匹配。其次,产业界流行的巨量转移技术在成本和良率上难以满足高分辨率显示技术的发展需求。特别对于AR/VR等超高分辨应用,不仅要求分辨率超过3000PPI,而且还需要显示像元有更快的响应频率。
合作团队瞄准高分辨率微显示领域,提出了MoS2 薄膜晶体管驱动电路与GaN基Micro-LED显示芯片的3D单片集成的技术方案。团队开发了非“巨量转移”的低温单片异质集成技术,采用近乎无损伤的大尺寸二维半导体TFT制造工艺,实现了1270 PPI的高亮度、高分辨率微显示器,可以满足未来微显示、车载显示、可见光通讯等跨领域应用。
其中,相较于传统二维半导体器件工艺,团队研发的新型工艺将薄膜晶体管性能提升超过200%,差异度降低67%,最大驱动电流超过200 μA/μm,优于IGZO、LTPS等商用材料,展示出二维半导体材料在显示驱动产业方面的巨大应用潜力。
该工作在国际上首次将高性能二维半导体TFT与Micro-LED两个新兴技术融合,为未来Micro-LED显示技术发展提供了全新技术路线。
上述工作分别以 “Epitaxial growth of wafer-scale molybdenum disulfide semiconductor single crystals on sapphire” (通讯作者为王欣然教授和东南大学王金兰教授)和 “Three dimensional monolithic micro-LED display driven by atomically-thin transistor matrix” (通讯作者为王欣然教授、刘斌教授、施毅教授和厦门大学张荣教授)为题, 近期在线发表于Nature Nanotechnology。
半导体异质结构一般是由两层以上不同材料所组成,它们各具不同的能带隙。这些材料可以是GaAs之类的化合物,也可以是Si-Ge之类的半导体合金。按异质结中两种材料导带和价带的对准情况可以把异质结分为Ⅰ型异质结和Ⅱ型异质结两种,两种异质结的能带结构异质结图册,I型异质结的能带结构是嵌套式对准的,窄带材料的导带底和价带顶都位于宽带材料的禁带中,ΔEc和ΔEv的符号相反,GaAlAs/GaAs和InGaAsP/InP都属于这一种。在Ⅱ型异质结中,ΔEc和ΔEv的符号相同。具体又可以分为两种:一种所示的交错式对准,窄带材料的导带底位于宽带材料的禁带中,窄带材料的价带顶位于宽带材料的价带中。另一种如图1(c)所示窄带材料的导带底和价带顶都位于宽带材料的价带中Ⅱ型异质结的基本特性是在交界面附近电子和空穴空间的分隔和在自洽量子阱中的局域化。由于在界面附近波函数的交叠,导致光学矩阵元的减少,从而使辐射寿命加长,激子束缚能减少。由于光强和外加电场会强烈影响Ⅱ型异质结的特性,使得与Ⅰ型异质结相比,Ⅱ型异质结表现出不寻常的载流子的动力学和复合特性,从而影响其电学、光学和光电特性及其器件的参数。http://ic.big-bit.com/news/list-75.html欢迎分享,转载请注明来源:内存溢出
评论列表(0条)