半导体扩散工艺是什么

半导体扩散工艺是什么,第1张

扩散技术目的在于控制半导体中特定区域内杂质的类型、浓度、深度和PN结。在集成电路发展初期是半导体器件生产的主要技术之一。但随着离子注入的出现,扩散工艺在制备浅结、低浓度掺杂和控制精度等方面的巨大劣势日益突出,在制造技术中的使用已大大降低。1 扩散机构2 替位式扩散机构这种杂质原子或离子大小与Si原子大小差别不大,它沿着硅晶体内晶格空位跳跃前进扩散,杂质原子扩散时占据晶格格点的正常位置,不改变原来硅材料的晶体结构。硼、磷、砷等是此种方式。 3. 填隙式扩散机构这种杂质原子大小与Si原子大小差别较大,杂质原子进入硅晶体后,不占据晶格格点的正常位置,而是从一个硅原子间隙到另一个硅原子间隙逐次跳跃前进。镍、铁等重金属元素等是此种方式在当今的亚微米工艺中,由于浅结、短沟的限制,硅片工艺后段的热过程越来越被谨慎地使用,但是退火仍然以不同的形式出现在工艺的流程中。退火可以激活杂质,减少缺陷,并获得一定的结深。它的工艺时间和温度关系到结深和杂质浓度。4磷掺杂由于磷掺杂的控制精度较底,它已经渐渐地退出了工艺制作的舞台。但是在一些要求不高的工艺步骤仍然在使用。5多晶掺杂向多晶中掺入大量的杂质,使多晶具有金属导电特质,以形成MOS之“M”或作为电容器的一个极板或形成多晶电阻,之所以不用离子注入主要是出于经济的原因

多数载流子和少数载流子决定了半导体材料的导电性质和电学特性。

半导体材料中的载流子可以分为两种类型:多数载流子和少数载流子。多数载流子是指在半导体中数目占绝大多数的载流子,例如在N型半导体中为自由电子,在P型半导体中为空穴。而少数载流子则是指占少数的载流子,在N型半导体中为空穴,在P型半导体中为自由电子。

由于多数载流子在半导体中数目占绝大多数,因此其运动对半导体材料的导电性质和电学特性起主导作用。例如,在N型半导体中,自由电子的数量远大于空穴的数量,因此它具有良好的电导性质,且易于被掺杂成P型半导体。而在P型半导体中,空穴的数量远大于自由电子的数量,因此它具有良好的电导性质,且易于被掺杂成N型半导体。

少数载流子虽然数目较少,但在半导体器件的工作中也起着重要作用,例如在PN结中的空间电荷区域,少数载流子的扩散和漂移会导致PN结的电特性发生变化,影响整个器件的性能。因此,对于半导体器件的设计和优化,需要充分考虑多数载流子和少数载流子的作用和影响。

另外,多数载流子和少数载流子也影响着半导体材料的光学特性。在光电器件中,例如光电二极管和太阳能电池,光子在半导体中的能量可以被吸收并激发出少数载流子,这些少数载流子的移动和扩散可以产生电流或电压信号。因此,在光电器件的设计中,需要选择适合的半导体材料,以保证光子的能量可以被有效地吸收并产生足够的载流子。

此外,半导体材料中的多数载流子和少数载流子也对热学特性和机械特性等方面产生影响。因此,在半导体材料的研究和应用中,需要综合考虑多种载流子的作用和相互影响。

半导体材料的多数载流子和少数载流子还对半导体器件的速度、功耗、噪声、稳定性等性能参数产生影响。例如,在晶体管等高频器件中,多数载流子的迁移速度和响应速度对器件的工作速度和频率响应有重要影响。少数载流子的影响则主要体现在器件的噪声和稳定性方面,因为少数载流子的扩散和漂移可以引起器件的随机噪声,并对器件的工作温度和环境变化等因素产生敏感性。

在半导体器件的设计和优化中,需要通过控制多数载流子和少数载流子的浓度、迁移率和寿命等参数,以实现所需的电学、光学、热学和机械性能。例如,通过掺杂控制和结构设计,可以改变半导体材料中多数载流子和少数载流子的分布和性质,从而实现对半导体器件的性能调节和优化。此外,还可以利用半导体材料的表面和界面特性,通过修饰和功能化等方法,改变多数载流子和少数载流子的表面浓度和分布,实现对器件性能的调控和优化。

总之,多数载流子和少数载流子是半导体材料的重要组成部分,它们决定了半导体材料的电学、光学、热学和机械性能,对半导体器件的设计、制造和应用产生了深刻的影响。

扩散(diffusion):物质分子从高浓度区域向低浓度区域转移

直到均匀分布的现象。扩散的速率与物质的浓度梯度成正比。

气体分子热运动的速率很大,分子间极为频繁地互相碰撞,每个分子的运动轨迹都是无规则的杂乱折线。温度越高,分子运动就越激烈。在0℃时空气分子的平均速率约为400米/秒,但是,由于极为频繁的碰撞,分子速度的大小和方向时刻都在改变,气体分子沿一定方向迁移的速率就相当慢,所以气体分子的速率比气体分子运动的速率要慢得多。

固体分子间的作用力很大,绝大多数分子只能在各自的平衡位置附近振动,这是固体分子热运动的基本形式。但是,在一定温度下,固体里也总有一些分子的速度较大,具有足够的能量脱离平衡位置。这些分子不仅能从一处移到另一处,而且有的还能进入相邻物体,这就是固体发生扩散的原因。固体的扩散在金属的表面处理和半导体材料生产上很有用处,例如,钢件的表面渗碳法(提高钢件的硬度)、渗铝法(提高钢件的耐热性),都利用了扩散现象;在半导体工艺中利用扩散法渗入微量的杂质,以达到控制半导体性能的目的。

液体分子的热运动情况跟固体相似,其主要形式也是振动。但除振动外,还会发生移动,这使得液体有一定体积而无一定形状,具有流动必,同时,其扩散速度也大于固体。

将装有两种不同气体的两个容器连通,经过一段时间,两种气体就在这两个容器中混合均匀,这种现象叫做扩散。用密度不同的同种气体实验,扩散也会发生,其结果是整个容器中气体密度处处相同。在液体间和固体间也会发生扩散现象。例如清水中滴入几滴红墨水,过一段时间,水就都染上红色;又如把两块不同的金属紧压在一起,经过较长时间后,每块金属的接触面内部都可发现另一种金属的成份。

扩散是由于微粒(原子、分子等)的热运动而产生的质量迁移现象,主要是由于密度差引起的。在扩散过程中,气体分子从密度较大的区域移向密度较小的区域,经过一段时间的掺和,密度分布趋向均匀。在扩散过程中,迁移的分子不是单一方向的,只是密度大的区域向密度小的区城迁移的分子数,多于密度小的区域向密度大的区域迁移的分子数。

扩散现象是气体分子的内迁移现象。从微观上分析是大量气体分子做无规则热运动时,分子之间发生相互碰撞的结果。由于不同空间区域的分子密度分布不均匀,分子发生碰撞的情况也不同。这种碰撞迫使密度大的区域的分子向密度小的区域转移,最后达到均匀的密度分布。


欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/dianzi/9106129.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-04-24
下一篇 2023-04-24

发表评论

登录后才能评论

评论列表(0条)

保存