20世纪最初的10年,通信系统已开始应用半导体材料。20世纪上半叶,在无线电爱好者中广泛流行的矿石收音机,就采用矿石这种半导体材料进行检波。半导体的电学特性也在电话系统中得到了应用。
晶体管的发明,最早可以追溯到1929年,当时工程师利莲费尔德就已经取得一种晶体管的专利。但是,限于当时的技术水平,制造这种器件的材料达不到足够的纯度,而使这种晶体管无法制造出来。
由于电子管处理高频信号的效果不理想,人们就设法改进矿石收音机中所用的矿石触须式检波器。在这种检波器里,有一根与矿石(半导体)表面相接触的金属丝(像头发一样细且能形成检波接点),它既能让信号电流沿一个方向流动,又能阻止信号电流朝相反方向流动。在第二次世界大战爆发前夕,贝尔实验室在寻找比早期使用的方铅矿晶体性能更好的检波材料时,发现掺有某种极微量杂质的锗晶体的性能不仅优于矿石晶体,而且在某些方面比电子管整流器还要好。
在第二次世界大战期间,不少实验室在有关硅和锗材料的制造和理论研究方面,也取得了不少成绩,这就为晶体管的发明奠定了基础。
为了克服电子管的局限性,第二次世界大战结束后,贝尔实验室加紧了对固体电子器件的基础研究。肖克莱等人决定集中研究硅、锗等半导体材料,探讨用半导体材料制作放大器件的可能性。
1945年秋天,贝尔实验室成立了以肖克莱为首的半导体研究小组,成员有布拉顿、巴丁等人。布拉顿早在1929年就开始在这个实验室工作,长期从事半导体的研究,积累了丰富的经验。他们经过一系列的实验和观察,逐步认识到半导体中电流放大效应产生的原因。布拉顿发现,在锗片的底面接上电极,在另一面插上细针并通上电流,然后让另一根细针尽量靠近它,并通上微弱的电流,这样就会使原来的电流产生很大的变化。微弱电流少量的变化,会对另外的电流产生很大的影响,这就是“放大”作用。
布拉顿等人,还想出有效的办法,来实现这种放大效应。他们在发射极和基极之间输入一个弱信号,在集电极和基极之间的输出端,就放大为一个强信号了。在现代电子产品中,上述晶体三极管的放大效应得到广泛的应用。
巴丁和布拉顿最初制成的固体器件的放大倍数为50左右。不久之后,他们利用两个靠得很近(相距0.05毫米)的触须接点,来代替金箔接点,制造了“点接触型晶体管”。1947年12月,这个世界上最早的实用半导体器件终于问世了,在首次试验时,它能把音频信号放大100倍,它的外形比火柴棍短,但要粗一些。
在为这种器件命名时,布拉顿想到它的电阻变换特性,即它是靠一种从“低电阻输入”到“高电阻输出”的转移电流来工作的,于是取名为trans-resister(转换电阻),后来缩写为transister,中文译名就是晶体管。
由于点接触型晶体管制造工艺复杂,致使许多产品出现故障,它还存在噪声大、在功率大时难于控制、适用范围窄等缺点。为了克服这些缺点,肖克莱提出了用一种"整流结"来代替金属半导体接点的大胆设想。半导体研究小组又提出了这种半导体器件的工作原理。
1950年,第一只“面结型晶体管”问世了,它的性能与肖克莱原来设想的完全一致。今天的晶体管,大部分仍是这种面结型晶体管。
1956年,肖克莱、巴丁、布拉顿三人,因发明晶体管同时荣获诺贝尔物理学奖。 [编辑本段]【晶体管的发展历史及其重要里程碑】1947年12月16日:威廉·邵克雷(William Shockley)、约翰·巴顿(John Bardeen)和沃特·布拉顿(Walter Brattain)成功地在贝尔实验室制造出第一个晶体管。
1950年:威廉·邵克雷开发出双极晶体管(Bipolar Junction Transistor),这是现在通行的标准的晶体管。
1953年:第一个采用晶体管的商业化设备投入市场,即助听器。
1954年10月18日:第一台晶体管收音机Regency TR1投入市场,仅包含4只锗晶体管。
1961年4月25日:第一个集成电路专利被授予罗伯特·诺伊斯(Robert Noyce)。最初的晶体管对收音机和电话而言已经足够,但是新的电子设备要求规格更小的晶体管,即集成电路。
1965年:摩尔定律诞生。当时,戈登·摩尔(Gordon Moore)预测,未来一个芯片上的晶体管数量大约每年翻一倍(10年后修正为每两年),摩尔定律在Electronics Magazine杂志一篇文章中公布。
1968年7月:罗伯特·诺伊斯和戈登·摩尔从仙童(Fairchild)半导体公司辞职,创立了一个新的企业,即英特尔公司,英文名Intel为“集成电子设备(integrated electronics)”的缩写。
1969年:英特尔成功开发出第一个PMOS硅栅晶体管技术。这些晶体管继续使用传统的二氧化硅栅介质,但是引入了新的多晶硅栅电极。
1971年:英特尔发布了其第一个微处理器4004。4004规格为1/8英寸 x 1/16英寸,包含仅2000多个晶体管,采用英特尔10微米PMOS技术生产。
1978年:英特尔标志性地把英特尔8088微处理器销售给IBM新的个人电脑事业部,武装了IBM新产品IBM PC的中枢大脑。16位8088处理器含有2.9万个晶体管,运行频率为5MHz、8MHz和10MHz。8088的成功推动英特尔进入了财富(Forture) 500强企业排名,《财富(Forture)》杂志将英特尔公司评为“七十大商业奇迹之一(Business Triumphs of the Seventies)”。
1982年:286微处理器(又称80286)推出,成为英特尔的第一个16位处理器,可运行为英特尔前一代产品所编写的所有软件。286处理器使用了13400个晶体管,运行频率为6MHz、8MHz、10MHz和12.5MHz。
1985年:英特尔386�6�4微处理器问世,含有27.5万个晶体管,是最初4004晶体管数量的100多倍。386是32位芯片,具备多任务处理能力,即它可在同一时间运行多个程序。
1993年:英特尔·奔腾·处理器问世,含有3百万个晶体管,采用英特尔0.8微米制程技术生产。
1999年2月:英特尔发布了奔腾·III处理器。奔腾III是1x1正方形硅,含有950万个晶体管,采用英特尔0.25微米制程技术生产。
2002年1月:英特尔奔腾4处理器推出,高性能桌面台式电脑由此可实现每秒钟22亿个周期运算。它采用英特尔0.13微米制程技术生产,含有5500万个晶体管。
2002年8月13日:英特尔透露了90纳米制程技术的若干技术突破,包括高性能、低功耗晶体管,应变硅,高速铜质接头和新型低-k介质材料。这是业内首次在生产中采用应变硅。
2003年3月12日:针对笔记本的英特尔·迅驰·移动技术平台诞生,包括了英特尔最新的移动处理器“英特尔奔腾M处理器”。该处理器基于全新的移动优化微体系架构,采用英特尔0.13微米制程技术生产,包含7700万个晶体管。
2005年5月26日:英特尔第一个主流双核处理器“英特尔奔腾D处理器”诞生,含有2.3亿个晶体管,采用英特尔领先的90纳米制程技术生产。
2006年7月18日:英特尔®安腾®2双核处理器发布,采用世界最复杂的产品设计,含有17.2亿个晶体管。该处理器采用英特尔90纳米制程技术生产。
2006年7月27日:英特尔·酷睿�6�42双核处理器诞生。该处理器含有2.9亿多个晶体管,采用英特尔65纳米制程技术在世界最先进的几个实验室生产。
2006年9月26日:英特尔宣布,超过15种45纳米制程产品正在开发,面向台式机、笔记本和企业级计算市场,研发代码Penryn,是从英特尔®酷睿�6�4微体系架构派生而出。
2007年1月8日:为扩大四核PC向主流买家的销售,英特尔发布了针对桌面电脑的65纳米制程英特尔·酷睿�6�42四核处理器和另外两款四核服务器处理器。英特尔·酷睿�6�42四核处理器含有5.8亿多个晶体管。
2007年1月29日:英特尔公布采用突破性的晶体管材料即高-k栅介质和金属栅极。英特尔将采用这些材料在公司下一代处理器——英特尔®酷睿�6�42双核、英特尔®酷睿�6�42四核处理器以及英特尔®至强®系列多核处理器的数以亿计的45纳米晶体管或微小开关中用来构建绝缘“墙”和开关“门”,研发代码Penryn。采用了这些先进的晶体管,已经生产出了英特尔45纳米微处理器。
近日,苹果、微软和谷歌等全球最大芯片买家,正在与英特尔等全球顶级芯片制造商成立一个新的游说团体“美国半导体联盟”,用以要求美国提供芯片制造补贴。这个半导体联盟的构成,几乎涵盖了全世界半导体相关行业的所有知名企业,不仅包括了通用电气、思科、谷歌、高通等欧美地区企业,还有三星、台积电等东亚企业,囊括了半导体行业中材料供应、设备制造、芯片代工等产业链中各个细分企业。
这个半导体联盟的诞生,部分原因的确是为了美国的补贴。但是最大的目的仍旧是美国为了加强本土制造业的发展,并进一步拉拢欧盟、日韩等盟友,同时维持自身在半导体产业中的垄断地位,以遏制我国相关产业的发展。上世纪80年代时,美国为打击半导体产业领头羊的日本,组建了半导体制造联盟,一举打垮了日本的半导体行业。如今,美国又要用相似的手段对付我们了。
虽然我国有着全球最大的市场,但市场永远意味着我们是购买的一方。无法打破技术垄断,实现独立自主,就永远无法把握主动权,就要在价格上被吸血。从当年的盾构机、高铁到如今我国与欧美在芯片上每年近2000多亿美元的贸易逆差都是例子。随着我国拥有了全世界最齐全的工业门类,制造业得以蓬勃发展,产业日益空心化的美国毫无疑问的感受到了压力。
目前,我国国内的半导体行业发展尚不平均。虽然在设计、封测方面达到了国际领先的水准,但是在生产半导体所需的材料和设备上还相对落后。如果这一联盟的确封锁严密,那么我国的半导体行业很可能会迎来一段艰难的日子。虽然手机或CPU等产能有限,但是小家电和智能 汽车 这种制程低于28nm以下的问题不大。而对于国际半导体行业来说,将我国排除在外,首先就要面临半导体大幅涨价。仅靠东南亚的产品,也无法得到质量和效率足够合格的产品,最后还是没有赢家。
总的来说,天下熙熙,皆为利来,此次半导体联盟的成立也说明我国半导体行业的发展真的触痛了这些国际巨头背后的美国。而我国半导体行业迟早要实现自给自足,这不仅是国内企业的奋斗目标,更是民族复兴的国家意志。
(文/在锐思)
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)