在半导体这个技术高度密集的行业,大者恒大,强者愈强的规律体现得非常明显。业内常有这种说法:行业老大吃肉,次席喝汤,而第三名只能勉强维持生存。这在一定程度上体现了相关企业的生存现状,特别是在各细分领域,以上说法还是很形象的。
不过,世事无绝对,特别是对于行业排名第三的企业来说,有的勉强维持经营,甚至几乎被产业遗忘;有的则踌躇满志,受到多方关注和支持,前途光明;还有的成为了行业明星,光芒几乎盖过了前两强企业。总之,在纷繁复杂的半导体行业内,“老三”们也是有喜有忧。
不过,总体来看, 行业老大的营收规模和市占率的优势大都非常明显,排名次席的企业与老大之间的市占和营收差距非常明显,而“老三”与行业二哥之间的关系则依细分领域而各有不同。
在CPU领域,除了Intel、AMD,宝岛台湾的 威盛电子 (VIA) 也是会造x86处理器的,不知道还有多少人知道?
成立于1992年的威盛,经过几年的发展,于1999年收购了Cyrix (当时是国家半导体的一个部门) 以及Centaur。自从收购了Cyrix之后,威盛开始涉足x86架构的CPU设计领域,先后推出了多款处理器,虽然性能无法与第一、第二名的Intel和AMD抗衡,但是其特长在于低功耗,因此得以在某些特殊领域的市场上站住脚跟。此外,威盛CPU有一个与众不同的特色,就是 硬件整合了数据加密/解密的功能 。
与此同时,威盛也为Intel和AMD提供PC用芯片组,但随着市场的发展,第三方提供的芯片组逐步退出市场,这也使得威盛在CPU及相关芯片市场的存在感越来越弱。如今,其CPU市占率不足1%。只能看着“苏妈”领导下的AMD单q匹马地对抗Intel。不过,不知道2016年以来AMD在CPU领域对Intel的强劲逆袭势头是否能带给威盛更多的信心和动力?
在GPU芯片领域,英伟达和AMD已经统治多年,一个主攻高性能应用,如服务器和 汽车 ,另一个则主攻消费类产品,以PC和 游戏 机为主。而自从2005年AMD收购ATI之后,市场上就再也没有出现过第三家能有一定市占率的独立GPU芯片供应商。这不禁让我们怀念起40多年前那个GPU诞生和处于生长期的时代,Intel、IBM和TI等群雄逐鹿,你方唱罢我登场,热闹非常。
而在半导体行业的上游,IP供应商的行业角色愈加重要,掌握标准制定权和产业上游核心资产的重要性已深入人心。 而在当今的GPU IP领域,主要厂商只剩下Imagination和Arm了,几乎找不出第三家。
当下,无论是泛IT领域,还是半导体行业,最受瞩目、发展潜力最大、对人们的生活和工作影响最为深远的非人工智能 (AI) 莫属了,而谁能在AI发展初期针对该时期的应用推出适当的芯片,无疑就会有巨大的商机,而这正是英伟达最近几年在做的。
拓墣产业研究院发布的2020年第一季度全球前十大IC设计公司榜单显示,排名第三的 英伟达 (NVIDIA) 表现依然稳健,第一季度营收年增长率达到39.6%。
英伟达在数据中心的增长相当强劲,特别是其GPU在高性能AI计算应用方面,在当下的芯片界一枝独秀。 也正是因为如此,该公司的市值在前些天一度超过了Intel,成为了全球市值排名第三的半导体企业,前两名分别是台积电和三星。
这样风光无限的第三名,在半导体发展史上也不多见,特别是对于一家IC设计企业来讲,更是如此,因为它是轻资产企业,自家没有芯片制造和封装厂,在这种情况下,市值能够超越Intel,且紧跟台积电和三星这样的资金、技术高度密集的重资产半导体企业,实属难得。记得上一次出现类似情况,还是在智能手机市场“疯狂”增长的2013年,当时,高通凭借其在手机基带和4G技术方面的提前布局,抓住了那一波智能手机高速发展的风口期,市值也一度超过了Intel,当时也是无限风光。
对于晶圆代工和封装测试这种重资产领域,起步早的企业具有非常大的先发优势,台积电和日月光都是如此。而对于后来者来说,追赶起来就显得非常吃力,几乎可以肯定地讲,只要细分领域的龙头老大不犯方向性的错误,后面的二哥和老三就很难逼近甚至超过。
而要缩短与领头羊,或是行业二哥的差距,往往就要采取一些“非常规”手段。
在全球封测业,中国台湾地区的 日月光和矽品长期占据着第一和第三的位置 ,二哥则是美国的安靠。而中国大陆的 长电 科技 为了提升营收规模和行业影响力,于2015年收购了新加坡的星科金朋,排名也来到了行业第三的位置。
那之后,一度出现了“消化不良”的状况,整体规模虽然提升了,但利润水平却出现了明显下滑,经过这些年的调整和适应,长电 科技 与星科金朋逐步实现“化学反应”,营收和利润不断改善,2019年实现扭亏为盈,且2020年第一季度经营业绩创 历史 同期新高。
从上图也可以看出,行业排名第三的长电 科技 ,无论是市占率,还是营收的同比增长情况,都是比较 健康 的。在收购星科金朋四年后,该公司以行业第三的位置继续向前发起着冲击。
作为封测业的上游,晶圆代工在全球半导体行业的地位举足轻重,甚至可以被看作为产业的核心。
台积电一直是该细分领域的龙头老大,而二哥和老三的位置在近些年有所变化。 2017年之前,行业排名第二的是格芯 (GlobalFoundries) ,而处于下风的 三星 一直将台积电作为赶超目标,为此,该集团于2017年将其晶圆代工业务部门独立了出去,也正是因为如此,三星晶圆代工业务的营收计算方法出现了很大的变化 (为三星自研的手机处理器代工营收归为晶圆代工业务部门) ,这样就使得三星晶圆代工的市占率提升了很多 (目前是18.8%) ,远高于格芯的7.4%,因此将后者挤到了第三的位置。
格芯自诞生之日起,一路走来,充满着坎坷。在4大纯晶圆代工厂中,GlobalFoundries的 历史 最短 (成立于2009年) ,而且是脱胎于传统的IDM公司AMD,在经过了一系列的分拆、整合、并购和更名以后,才形成了今天的格芯。
虽然有中东母公司的巨额投入,但格芯的盈利能力一直难以令人满意。2018年,该公司宣布放弃12nm以下 (不包括12nm) 先进制程技术的研发,将精力放在特色工艺技术研发。
这一策略,一方面是为了避开与台积电硬碰硬式的竞争,以降低风险,提升资金利用效率,另一方面,格芯要更加大力发展特色工艺SOI。实际上,SOI虽然不是什么新的技术,但这真的是一种比较好、接地气的工艺。当下,相对于FD-SOI,RF-SOI已经取得了比较广泛的应用,特别是以手机为代表的移动通信终端的RF前端,其应用的如鱼得水。而FD-SOI发展的相对较慢,其可以说是与体硅的逻辑工艺并驾齐驱的竞争技术,最大的特色就是漏电少,低功耗。
而今的晶圆代工行业老三正处在大调整时期,在市占率方面,要想追赶前面的两家,难于登天,与此同时,身后的联电和中芯国际对其位置也虎视眈眈,而且, 相对于格芯追赶前两名的难度来说,联电和中芯国际追赶格芯的难度要小得多 ,它们三家的市占率差距不是很大,联电为7.3%,排名第五的中芯国际市占率为4.8%。
最近,中芯国际登陆科创板,其市值一度超过了6000亿元,这极大地提升了其在A股市场的融资能力,对于资本高度密集的晶圆代工厂商来说,有足够和持续的资金供应是至关重要的,而科创板和“大基金”会给它巨大的支持。也因为如此,越来越多的人对于中芯国际进一步提升营收和市占率充满信心。
招商电子日前发表了研究报告,表达了对中芯国际的看好,认为该公司现在的研发强度及资本开支都要高于行业平均水平,到2021年,有可能接近或超越没有10nm及更先进制程的联电和格芯,从而来到行业第三的位置。
中芯国际已经量产了14nm芯片,12nm也已经导入客户验证,而且还在研究N+1、N+2代工艺,虽然官方一直不肯明确这两代工艺到底是什么节点的,不过,据业界分析,N+1大概是8nm制程,而n+2则接近7nm工艺。不过,这些只是猜测,准确信息还要以中芯国际的官方公告为准。
当然,在2021年就能来到行业第三的位置是我们美好的愿望,但要实现起来,难度非常大,特别是在晶圆代工这个技术壁垒高起的细分领域,短时间内赶超前者非常困难。
结语
可见,在半导体行业,要坐到、坐稳各细分领域老三的位置,也不是一件容易的事情。
作者 / 张健keya
#半导体芯片产业# #ARM将提高部分客户授权费# #华为海思#
在1962年7月召开的固体器件研究国际会议上,美国麻省理工学院林肯实验室的两名学者克耶斯(Keyes)和奎斯特(Quist)报告了砷化镓材料的光发射现象,这引起通用电气研究实验室工程师哈尔(Hall)的极大兴趣,在会后回家的火车上他写下了有关数据。回到家后,哈尔立即制定了研制半导体激光器的计划,并与其他研究人员一道,经数周奋斗,他们的计划获得成功。
像晶体二极管一样,半导体激光器也以材料的p-n结特性为基础,且外观亦与前者类似,因此,半导体激光器常被称为二极管激光器或激光二极管。 早期的激光二极管有很多实际限制,例如,只能在77K低温下以微秒脉冲工作,过了8年多时间,才由贝尔实验室和列宁格勒(圣彼得堡)约飞(Ioffe)物理研究所制造出能在室温下工作的连续器件。而足够可靠的半导体激光器则直到70年代中期才出现。
半导体激光器体积非常小,最小的只有米粒那样大。工作波长依赖于激光材料,一般为0.6~1.55微米,由于多种应用的需要,更短波长的器件在发展中。据报导,以Ⅱ~Ⅳ价元素的化合物,如ZnSe为工作物质的激光器,低温下已得到0.46微米的输出,而波长0.50~0.51微米的室温连续器件输出功率已达10毫瓦以上。但迄今尚未实现商品化。
光纤通信是半导体激光可预见的最重要的应用领域,一方面是世界范围的远距离海底光纤通信,另一方面则是各种地区网。后者包括高速计算机网、航空电子系统、卫生通讯网、高清晰度闭路电视网等。但就而言,激光唱机是这类器件的最大市场。其他应用包括高速打印、自由空间光通信、固体激光泵浦源、激光指示,及各种医疗应用等。
20世纪60年代初期的半导体激光器是同质结型激光器,它是在一种材料上制作的pn结二极管在正向大电流注人下,电子不断地向p区注人,空穴不断地向n区注人.于是,在原来的pn结耗尽区内实现了载流子分布的反转,由于电子的迁移速度比空穴的迁移速度快,在有源区发生辐射、复合,发射出荧光,在一定的条件下发生激光,这是一种只能以脉冲形式工作的半导体激光器。 半导体激光器发展的第二阶段是异质结构半导体激光器,它是由两种不同带隙的半导体材料薄层,如GaAs,GaAlAs所组成,最先出现的是单异质结构激光器(1969年).单异质结注人型激光器(SHLD)是利用异质结提供的势垒把注入电子限制在GaAsP一N结的P区之内,以此来降低阀值电流密度,其数值比同质结激光器降低了一个数量级,但单异质结激光器仍不能在室温下连续工作。
1970年,实现了激光波长为9000&Aring:室温连续工作的双异质结GaAs-GaAlAs(砷化镓一镓铝砷)激光器。双异质结激光器(DHL)的诞生使可用波段不断拓宽,线宽和调谐性能逐步提高。其结构的特点是在P型和n型材料之间生长了仅有0. 2 Eam厚,不掺杂的,具有较窄能隙材料的一个薄层,因此注人的载流子被限制在该区域内(有源区),因而注人较少的电流就可以实现载流子数的反转。在半导体激光器件中,比较成熟、性能较好、应用较广的是具有双异质结构的电注人式GaAs二极管激光器。
随着异质结激光器的研究发展,人们想到如果将超薄膜(<20nm)的半导体层作为激光器的激括层,以致于能够产生量子效应,结果会是怎么样?再加之由于MBE,MOCVD技术的成就。于是,在1978年出现了世界上第一只半导体量子阱激光器(QWL),它大幅度地提高了半导体激光器的各种性能.后来,又由于MOCVD,MBE生长技术的成熟,能生长出高质量超精细薄层材料,之后,便成功地研制出了性能更加良好的量子阱激光器,量子阱半导体激光器与双异质结(DH)激光器相比,具有阑值电流低、输出功率高,频率响应好,光谱线窄和温度稳定性好和较高的电光转换效率等许多优点。
QWL在结构上的特点是它的有源区是由多个或单个阱宽约为100人的势阱所组成,由于势阱宽度小于材料中电子的德布罗意波的波长,产生了量子效应,连续的能带分裂为子能级.因此,特别有利于载流子的有效填充,所需要的激射阅值电流特别低.半导体激光器的结构中应用的主要是单、多量子阱,单量子阱(SQW)激光器的结构基本上就是把普通双异质结(DH)激光器的有源层厚度做成数十nm以下的一种激光器,通常把势垒较厚以致于相邻势阱中电子波函数不发生交迭的周期结构称为多量子阱(MQW ).量子阱激光器单个输出功率现已大于1w,承受的功率密度已达l OMW/cm3以上)而为了得到更大的输出功率,通常可以把许多单个半导体激光器组合在一起形成半导体激光器列阵。因此,量子阱激光器当采用阵列式集成结构时,输出功率则可达到l00w以上.高功率半导体激光器(特别是阵列器件)飞速发展,已经推出的产品有连续输出功率5 W,10W,20W和30W的激光器阵列.脉冲工作的半导体激光器峰值输出功率50w. 120W和1500W的阵列也已经商品化.一个4. 5 cm x 9cm的二维阵列,其峰值输出功率已经超过45kW.峰值输出功率为350kW的二维阵列也已间世。 从20世纪70年代末开始,半导体激光器明显向着两个方向发展,一类是以传递信息为目的的信息型激光器.另一类是以提高光功率为目的的功率型激光器.在泵浦固体激光器等应用的推动下,高功率半导体激光器(连续输出功率在100W 以上,脉冲输出功率在5W以上,均可称之谓高功率半导体激光器)在20世纪90年代取得了突破性进展,其标志是半导体激光器的输出功率显著增加,国外千瓦级的高功率半导体激光器已经商品化,国内样品器件输出已达到600W[61.如果从激光波段的被扩展的角度来看,先是红外半导体激光器,接着是670nm红光半导体激光器大量进入应用,接着,波长为650nm,635nm的问世,蓝绿光、蓝光半导体激光器也相继研制成功,10mw量级的紫光乃至紫外光半导体激光器,也在加紧研制中[a}为适应各种应用而发展起来的半导体激光器还有可调谐半导体激光器,电子束激励半导体激光器以及作为“集成光路”的最好光源的分布反馈激光器(DFB一LD),分布布喇格反射式激光器(DBR一LD)和集成双波导激光器.另外,还有高功率无铝激光器(从半导体激光器中除去铝,以获得更高输出功率,更长寿命和更低造价的管子)、中红外半导体激光器和量子级联激光器等等.其中,可调谐半导体激光器是通过外加的电场、磁场、温度、压力、掺杂盆等改变激光的波长,可以很方便地对输出光束进行调制.分布反馈(DF)式半导体激光器是伴随光纤通信和集成光学回路的发展而出现的,它于1991年研制成功,分布反馈式半导体激光器完全实现了单纵模运作,在相干技术领域中又开辟了巨大的应用前景它是一种无腔行波激光器,激光振荡是由周期结构(或衍射光栅)形成光藕合提供的,不再由解理面构成的谐振腔来提供反馈,优点是易于获得单模单频输出,容易与纤维光缆、调制器等耦合,特别适宜作集成光路的光源。
单极性注入的半导体激光器是利用在导带内(或价带内)子能级间的热电子光跃迁以实现受激光发射,自然要使导带和价带内存在子能级或子能带,这就必须采用量子阱结构.单极性注入激光器能获得大的光功率输出,是一种商效率和超商速响应的半导体激光器,并对发展硅基激光器及短波激光器很有利.量子级联激光器的发明大大简化了在中红外到远红外这样宽波长范围内产生特定波长激光的途径.它只用同一种材料,根据层的厚度不同就能得到上述波长范围内的各种波长的激光.同传统半导体激光器相比,这种激光器不需冷却系统,可以在室温下稳定 *** 作.低维(量子线和量子点)激光器的研究发展也很快,日本okayama的GaInAsP/Inp长波长量子线(Qw+)激光器已做到9OkCW工作条件下Im =6.A,l =37A/cm2并有很高的量子效率.众多科研单位正在研制自组装量子点(QD)激光器,该QDLD已具有了高密度,高均匀性和高发射功率.由于实际需要,半导体激光器的发展主要是围绕着降低阔值电流密度、延长工作寿命、实现室温连续工作,以及获得单模、单频、窄线宽和发展各种不同激射波长的器件进行的。 20世纪90年代出现并特别值得一提的是面发射激光器(SEL),早在1977年,人们就提出了所谓的面发射激光器,并于1979年做出了第一个器件,1987年做出了用光泵浦的780nm的面发射激光器.1998年GaInAIP/GaA。面发射激光器在室温下达到亚毫安的网电流,8mW的输出功率和11%的转换效率[2)前面谈到的半导体激光器,从腔体结构上来说,不论是F一P(法布里一泊罗)腔或是DBR(分布布拉格反射式)腔,激光输出都是在水平方向,统称为水平腔结构.它们都是沿着衬底片的平行方向出光的.而面发射激光器却是在芯片上下表面镀上反射膜构成了垂直方向的F一P腔,光输出沿着垂直于衬底片的方向发出,垂直腔面发射半导体激光器(VCSELS)是一种新型的量子阱激光器,它的激射阔值电流低,输出光的方向性好,藕合效率高,通过阵列化分布能得到相当强的光功率输出,垂直腔面发射激光器已实现了工作温度最高达71℃。另外,垂直腔面发射激光器还具有两个不稳定的互相垂直的偏振横模输出,即x模和y模,对偏振开关和偏振双稳特性的研究也进入到了一个新阶段,人们可以通过改变光反馈、光电反馈、光注入、注入电流等等因素实现对偏振态的控制,在光开关和光逻辑器件领域获得新的进展。20世纪90年代末,面发射激光器和垂直腔面发射激光器得到了迅速的发展,且已考虑了在超并行光电子学中的多种应用.980mn,850nm和780nm的器件在光学系统中已经实用化.垂直腔面发射激光器已用于千兆位以太网的高速网络。为了满足21世纪信息传输宽带化、信息处理高速化、信息存储大容量以及军用装备小型、高精度化等需要,半导体激光器的发展趋势主要在高速宽带LD、大功率ID,短波长LD,盆子线和量子点激光器、中红外LD等方面.在这些方面取得了一系列重大的成果。
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)