半导体的材料:常温下导电性能介于导体(conductor)与绝缘体(insulator)之间的材料。半导体按化学成分可分为元素半导体和化合物半导体两大类。锗和硅是最常用的元素半导体;化合物半导体包括第Ⅲ和第Ⅴ族化合物(砷化镓、磷化镓等)、第Ⅱ和第Ⅵ族化合物( 硫化镉、硫化锌等)、氧化物(锰、铬、铁、铜的氧化物),以及由Ⅲ-Ⅴ族化合物和Ⅱ-Ⅵ族化合物组成的固溶体(镓铝砷、镓砷磷等)。除上述晶态半导体外,还有非晶态的玻璃半导体、有机半导体等。
半导体的作用:
(1)集成电路 它是半导体技术发展中最活跃的一个领域,已发展到大规模集成的阶段。在几平方毫米的硅片上能制作几万只晶体管,可在一片硅片上制成一台微信息处理器,或完成其它较复杂的电路功能。集成电路的发展方向是实现更高的集成度和微功耗,并使信息处理速度达到微微秒级。
(2)微波器件 半导体微波器件包括接收、控制和发射器件等。毫米波段以下的接收器件已广泛使用。在厘米波段,发射器件的功率已达到数瓦,人们正在通过研制新器件、发展新技术来获得更大的输出功率。
(3)光电子器件 半导体发光、摄象器件和激光器件的发展使光电子器件成为一个重要的领域。它们的应用范围主要是:光通信、数码显示、图象接收、光集成等。
半导体的特点:
(1)电阻率的变化受杂质含量的影响极大。例如,硅中只含有亿分之一的硼,电阻率就会下降到原来的千分之一。如果所含杂质的类型不同,导电类型也不同。由此可见,半导体的导电性与所含的微量杂质有着非常密切的关系。
(2)电阻率受外界条件(如热、光等)的影响很大。温度升高或受光照射时均可使电阻率迅速下降。一些特殊的半导体在电场或磁场的作用下,电阻率也会发生改变。
拓展:半导体的未来发展
以GaN(氮化镓)为代表的第三代半导体材料及器件的开发是新兴半导体产业的核心和基础,其研究开发呈现出日新月异的发展势态。GaN基光电器件中,蓝色发光二极管LED率先实现商品化生产 成功开发蓝光LED和LD之后,科研方向转移到GaN紫外光探测器上 GaN材料在微波功率方面也有相当大的应用市场。氮化镓半导体开关被誉为半导体芯片设计上一个新的里程碑。美国佛罗里达大学的科学家已经开发出一种可用于制造新型电子开关的重要器件,这种电子开关可以提供平稳、无间断电源。
1、离线Low-E玻璃一般采用真空磁控溅射镀膜工艺,在玻璃表面镀制多层复合膜,实现Low-E功能。最主要的优点是颜色丰富多彩,纯度、热学性能均优于在线Low-E玻璃。
离线Low—E玻璃品种多样,根据不同气候特点可以制作高、中、低多种透过率产品,并且颜色上有银灰、浅灰、浅蓝和无色透明等,用着色玻璃还可制作绿色等其他多种颜色。厚度从3~12mm都可制做。它的缺点是银膜层非常脆弱,必须要做成中空玻璃,且在未做成中空产品之前,也不适宜长途运输。
2、在线Low-E玻璃是通过设备改造,采用化学气相沉积工艺和专用材料在浮法生产线上的玻璃带表面形成一层具有低辐射性能的功能膜。这种工艺生产的Lowe玻璃我们也称为在线Lowe玻璃,其膜层材料一般都是为半导体氧化物,产品颜色仅有青色和无色两种。
而且玻璃品种也很单一,受浮法玻璃规模生产的限制,目前只有6mm厚,无色透明的一种品种。在线Low-E以及离线Low-E相比,有很多优点,比如:可以钢化、弯曲加工,一般都可以单独的使用,不需要中空层来进行保护,不受存储时间的限制。但是它的保温隔热性能较差,离线Low-E玻璃的传热系数值是在线的2/5~3/5倍。
3、在大型公建项目上.离线镀膜玻璃的使用率高达98%.在民用住宅项目上在线镀膜玻璃的使用率高达90%以上.这主要是由其性能和价格造成的.民用住宅以往多采用白玻璃.在线镀膜玻璃的性能毕竟优于白玻璃.而且价格也极为便宜.因此较适合于民用住宅使用.
公建项目考虑到建筑物的档次.外观颜色一致的可靠性及对节能性的要求.基本上都是采用的高档离线镀膜的玻璃产品。LOW-E玻璃其实 就是低辐射玻璃,它是在玻璃表面上镀膜,是玻璃的辐射率E由0.84降低到0.15以下形成的。
非晶态半导体与晶态相比较,其中存在大量的缺陷。这些缺陷在禁带之中引入一系列局域能级,它们对非晶态半导体的电学和光学性质有着重要的影响。四面体键非晶态半导体和硫系玻璃,这两类非晶态半导体的缺陷有着显著的差别。
非晶硅中的缺陷主要是空位、微空洞。硅原子外层有四个价电子,正常情况应与近邻的四个硅原子形成四个共价键。存在有空位和微空洞使得有些硅原子周围四个近邻原子不足,而产生一些悬挂键,在中性悬挂键上有一个未成键的电子。悬挂键还有两种可能的带电状态:释放未成键的电子成为正电中心,这是施主态;接受第二个电子成为负电中心,这是受主态。它们对应的能级在禁带之中,分别称为施主和受主能级。因为受主态表示悬挂键上有两个电子占据的情况,两个电子间的库仑排斥作用,使得受主能级位置高于施主能级,称为正相关能。因此在一般情况下,悬挂键保持只有一个电子占据的中性状态,在实验中观察到悬挂键上未配对电子的自旋共振。1975年斯皮尔等人利用硅烷辉光放电的方法,首先实现非晶硅的掺杂效应,就是因为用这种办法制备的非晶硅中含有大量的氢,氢与悬挂键结合大大减少了缺陷态的数目。这些缺陷同时是有效的复合中心。为了提高非平衡载流子的寿命,也必须降低缺陷态密度。因此,控制非晶硅中的缺陷,成为目前材料制备中的关键问题之一。
硫系玻璃中缺陷的形式不是简单的悬挂键,而是换价对。最初,人们发现硫系玻璃与非晶硅不同,观察不到缺陷态上电子的自旋共振,针对这表面上的反常现象,莫脱等人根据安德森的负相关能的设想,提出了MDS模型。当缺陷态上占据两个电子时,会引起点阵的畸变,若由于畸变降低的能量超过电子间库仑排斥作用能,则表现出有负的相关能,这就意味着受主能级位于施主能级之下。用 D、D、D 分别代表缺陷上不占有、占有一个、占有两个电子的状态,负相关能意味着:
2D ─→ D+D
是放热的。因而缺陷主要以D、D形式存在,不存在未配对电子,所以没有电子的自旋共振。不少人对D、D、D缺陷的结构作了分析。以非晶态硒为例,硒有六个价电子,可以形成两个共价键,通常呈链状结构,另外有两个未成键的 p电子称为孤对电子。在链的端点处相当于有一个中性悬挂键,这个悬挂键很可能发生畸变,与邻近的孤对电子成键并放出一个电子(形成D),放出的电子与另一悬挂键结合成一对孤对电子(形成D),如图5所示。因此又称这种D、D为换价对。由于库仑吸引作用,使得D、D通常是成对地紧密靠在一起,形成紧密换价对。硫系玻璃中成键方式只要有很小变化就可以形成一组紧密换价对,如图6所示,它只需很小的能量,有自增强效应,因而这种缺陷的浓度通常是很高的。利用换价对模型可以解释硫属非晶态半导体的光致发光光谱、光致电子自旋共振等一系列实验现象。
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)