一、N型半导体
N型半导体也称为电子型半导体,即自由电子浓度远大于空穴浓度的杂质半导体。
形成原理
掺杂和缺陷均可造成导带中电子浓度的增高. 对于锗、硅类半导体材料,掺杂Ⅴ族元素,当杂质原子以替位方式取代晶格中的锗、硅原子时,可提供除满足共价键配位以外的一个多余电子,这就形成了半导体中导带电子浓度的增加,该类杂质原子称为施主. Ⅲ-Ⅴ族化合物半导体的施主往往采用Ⅳ或Ⅵ族元素. 某些氧化物半导体,其化学配比往往呈现缺氧,这些氧空位能表现出施主的作用,因而该类氧化物通常呈电子导电性,即是N型半导体,真空加热,能进一步加强缺氧的程度。
二、P型半导体
P型半导体一般指空穴型半导体,是以带正电的空穴导电为主的半导体。
形成
在纯净的硅晶体中掺入三价元素(如硼),使之取代晶格中硅原子的位置,就形成P型半导体。在P型半导体中,空穴为多子,自由电子为少子,主要靠空穴导电。由于P型半导体中正电荷量与负电荷量相等,故P型半导体呈电中性。空穴主要由杂质原子提供,自由电子由热激发形成。
扩展资料
特点:
(一)、N型半导体
由于N型半导体中正电荷量与负电荷量相等,故N型半导体呈电中性。自由电子主要由杂质原子提供,空穴由热激发形成。掺入的杂质越多,多子(自由电子)的浓度就越高,导电性能就越强。
(二)、P型半导体
掺入的杂质越多,多子(空穴)的浓度就越高,导电性能就越强。
参考资料来源:百度百科-N型半导体
参考资料来源:百度百科-P型半导体
半导体中非平衡载流子的复合过程可以通过多种方式、即不同的复合机理来完成。这与半导体的能带结构紧密相关。对于具有直接跃迁能带(导带底与价带顶在Brilouin区的同一个k处)的GaAs、InSb、PbSb、PbTe等半导体,导带电子与价带空穴直接发生复合时没有准动量k的变化,可较容易地发生,这称为直接复合(竖直跃迁)的机理,这时非平衡载流子的寿命就由此直接复合过程来决定。而对于Si、Ge等具有间接跃迁能带(导带底与价带顶不在Brilouin区的同一个k处)的半导体,电子与空穴发生直接复合(非竖直跃迁)时将有动量的变化,则一般比较难于发生;但这类半导体如果通过另外一种因素的帮助,即可比较容易实现复合,这种起促进复合作用的因素往往是一些具有较深束缚能级(多半处于禁带中央附近)的杂质或缺陷中心,特称为复合中心。借助于复合中心的复合就称为间接复合(也称为Shockley-Read-Hall [SRH]复合),这时非平衡载流子的寿命就主要决定于复合中心的浓度和性质。关于非平衡载流子的复合,除了直接复合和间接复合以外,还有许多其它的复合机理,例如表面复合、Auger复合等。欢迎分享,转载请注明来源:内存溢出
评论列表(0条)