自成立以来,AMD就不断地开发新产品,并逐渐形成了一套与众不同的企业文化,而众多员工也在事业上取得了很大的成就。下面将简单介绍AMD近三十年来的发展历程,从中我们可以预见公司的灿烂前景。
AMD的历史悠久,业绩显赫。这个传统已经成为一股凝聚力,将AMD的全球员工紧密地团结在一起。AMD创办于1969年,当时公司的规模很小,甚至总部就设在一位创始人的家中。但是从那时起到现在,AMD一直在不断地发展,目前已经成为一家年收入高达24亿美元的跨国公司。下面将介绍决定AMD发展方向的重要事件、推动AMD向前发展的主要力量,并按时间顺序回顾AMD各年大事。
1969-74 - 寻找机会
对Jerry Sanders来说,1969年5月1日是一个非常重要的日子。在此之前的几个月里,他与其它七个合作伙伴一直为创建一家新公司而埋头苦干。Jerry已经在上一年辞去了Fairchild Semiconductor公司全球行销总监的职务。此刻,他正带领一个团队努力工作,这个团队的目标非常明确--通过为生产计算机、通信设备和仪表等电子产品的厂商提供日益精密的构成模块,创建一家成功的半导体公司。
虽然在公司刚成立时,所有员工只能在创始人之一的JohnCarey的起居室中办公,但不久他们便迁往美国加州圣克拉拉,租用一家地毯店铺后面的两个房间作为办公地点。到当年9月份,AMD已经筹得所需的资金,可以开始生产,并迁往加州森尼韦尔的901 Thompson Place,这是AMD的第一个永久性办公地点。
在创办初期,AMD的主要业务是为其它公司重新设计产品,提高它们的速度和效率,并以"第二供应商"的方式向市场提供这些产品。AMD当时的口号是"更卓越的参数表现"。为了加强产品的销售优势,该公司提供了业内前所未有的品质保证--所有产品均按照严格的MIL-STD-883标准进行生产及测试,有关保证适用于所有客户,并且不会加收任何费用。
在AMD创立五周年时,AMD已经拥有1500名员工,生产200多种不同的产品--其中很多都是AMD自行开发的,年销售额将近2650万美元。
历史回顾
1969年5月1日--AMD公司以10万美元的启动资金正式成立。
1969年9月--AMD公司迁往位于901 Thompson Place,Sunnyvale 的新总部。
1969年11月--Fab 1产出第一个优良芯片--Am9300,这是一款4位MSI移位寄存器。
1970年5月--AMD成立一周年。这时AMD已经拥有53名员工和18种产品,但是还没有销售额。
1970--推出一个自行开发的产品--Am2501。
1972年11月--开始在新落成的902 Thompson Place 厂房中生产晶圆。
1972年9月--AMD上市,以每股15美元的价格发行了52.5万股。
1973年1月--AMD在马来西亚槟榔屿设立了第一个海外生产基地,以进行大批量生产。
1973--进行利润分红。
1974--AMD以2650万美元的销售额结束第五个财年。
1974-79 - 定义未来
AMD在第二个五年的发展让全世界体会到了它最持久的优点--坚忍不拔。尽管美国经济在1974到75年之间经历了一场严重的衰退,AMD公司的销售额也受到了一定的影响,但是仍然在此期间增长到了1.68亿美元,这意味着平均年综合增长率超过60%。
在AMD成立五周年之际,AMD举办了一项后来发展成为公司著名传统的活动--它举办了一场盛大的庆祝会,即一个由员工及其亲属参加的游园会。
这也是AMD大幅度扩建生产设施的阶段,这包括在森尼韦尔建造915 DeGuigne,在菲律宾马尼拉设立一个组装生产基地,以及扩建在马来西亚槟榔屿的厂房。
历史回顾
1974年5月--为了庆祝公司创建五周年,AMD举办了一次员工游园会,向员工赠送了一台电视、多辆10速自行车和丰盛的烧烤野餐。
1974--位于森尼韦尔的915 DeGuigne建成。
1974-75--经济衰退迫使AMD规定专业人员每周工作44小时。
1975--AMD通过AM9102进入RAM市场。
1975--Jerry Sanders提出:"以人为本,产品和利润将会随之而来。"
1975--AMD的产品线加入8080A标准处理器和AM2900系列。
1976--AMD在位于帕洛阿尔托的Rickey's Hyatt House 举办了第一次盛大的圣诞节聚会。
1976--AMD和Intel签署专利相互授权协议。
1977--西门子和AMD创建Advanced Micro Computers (AMC) 公司。
1978--AMD在马尼拉设立一个组装生产基地。
1978--AMD的销售额达到了一个重要的里程碑:年度总营业额达到1亿美元。
1978--奥斯丁生产基地开始动工。
1979--奥斯丁生产基地投入使用。
1979--AMD在纽约股票交易所上市。
1980 - 1983 - 寻求卓越
在20世纪80年代早期,两个著名的标志代表了AMD的处境。第一个是所谓的"芦笋时代",它代表了该公司力求增加它向市场提供的专利产品数量的决心。与这种高利润的农作物一样,专利产品的开发需要相当长的时间,但是最终会给前期投资带来满意的回报。第二个标志是一个巨大的海浪。AMD将它作为"追赶潮流"招募活动的核心标志,并用这股浪潮表示集成电路领域的一种不可阻挡的力量。
我们的确是不可阻挡的。AMD的研发投资一直领先于业内其他厂商。在1981财年结束时,该公司的销售额比1979财年增长了一倍以上。在此期间,AMD扩建了它的厂房和生产基地,并着重在得克萨斯州建造新的生产设施。AMD在圣安东尼奥建起了新的生产基地,并扩建了奥斯丁的厂房。AMD迅速地成为了全球半导体市场中的一个重要竞争者。
历史回顾
1980--Josie Lleno在AMD在圣何塞会议中心举办的"五月圣诞节"聚会中赢得了连续20年、每月1000美元的奖励。
1981--AMD的芯片被用于建造哥伦比亚号航天飞机。
1981--圣安东尼奥生产基地建成。
1981--AMD和Intel决定延续并扩大他们原先的专利相互授权协议。
1982--奥斯丁的第一条只需4名员工的生产线(MMP)开始投入使用。
1982--AMD和Intel签署围绕iAPX86微处理器和周边设备的技术交换协议。
1983--AMD推出当时业内最高的质量标准INT.STD.1000。
1983--AMD新加坡分公司成立。
1984-1989 --经受严峻考验
AMD以公司有史以来最佳的年度销售业绩迎来了它的第十五周年。在AMD庆祝完周年纪念之后的几个月里,员工们收到了创纪录的利润分红支票,并与来自洛杉矶的Chicago乐队和来自得克萨斯州的Joe King Carrasco 、Crowns等乐队一同欢庆圣诞节。
但是在1986年,变革大潮开始席卷整个行业。日本半导体厂商逐渐在内存市场中占据了主导地位,而这个市场一直是AMD业务的主要支柱。同时,一场严重的经济衰退冲击了整个计算机市场,限制了人们对于各种芯片的需求。AMD和半导体行业的其他公司都致力于在日益艰难的市场环境中寻找新的竞争手段。
到了1989,Jerry Sanders开始考虑改革:改组整个公司,以求在新的市场中赢得竞争优势。AMD开始通过设立亚微米研发中心,加强自己的亚微米制造能力。
历史回顾
1984--曼谷生产基地开始动工。
1984--奥斯丁的第二个厂房开始动工。
1984--AMD被列入《美国100家最适宜工作的公司》一书。
1985--AMD首次进入财富500强。
1985--位于奥斯丁的Fabs 14 和15投入使用。
1985--AMD启动自由芯片计划。
1986--AMD推出29300系列32位芯片。
1986--AMD推出业界第一款1M比特的EPROM。
1986年10月--由于长时间的经济衰退,AMD宣布了10多年来的首次裁员计划。
1986年9月--Tony Holbrook被任命为公司总裁。
1987--AMD与Sony公司共同设立了一家CMOS技术公司。
1987年4月--AMD向Intel公司提起法律诉讼。
1987年4月--AMD和 Monolithic Memories公司达成并购协议。
1988年10月--SDC开始动工。
1989-94 - 展开变革
为了寻找新的竞争手段,AMD提出了"影响范围"的概念。对于改革AMD而言,这些范围指的是兼容IBM计算机的微处理器、网络和通信芯片、可编程逻辑设备和高性能内存。此外,该公司的持久生命力还来自于它在亚微米处理技术开发方面取得的成功。这种技术将可以满足该公司在下一个世纪的生产需求。
在AMD创立25周年时,AMD已经动用了它所拥有的所有优势来实现这些目标。目前,AMD在它所参与的所有市场中都名列第一或者第二,其中包括Microsoft Windows? 兼容市场。该公司在这方面已经成功地克服了法律障碍,可以生产自行开发的、被广泛采用的Am386? 和 Am486? 微处理器。AMD已经成为闪存、EPROM、网络、电信和可编程逻辑芯片的重要供应商,而且正在致力于建立另外一个专门生产亚微米设备的大批量生产基地。在过去三年中,该公司获得了创纪录的销售额和运营收入。
尽管AMD的形象与25年前相比已经有了很大的不同,但是它仍然像过去一样,是一个顽强、坚决的竞争对手,并可以通过它的员工的不懈努力,战胜任何挑战。
历史回顾
1989年5月--AMD设立高层领导办公室,其中包括公司的三位高层主管。
1990年5月--Rich Previte成为公司的总裁兼首席执行官。Tony Holbrook继续担任首席技术官,并成为董事会主席。
1990年9月--SDC开始使用硅技术。
1991年3月--AMD推出AM386微处理器系列,成功打破了Intel对市场的垄断。
1991年10月--AMD售出它的第一百万个Am386。
1992年2月--AMD对Intel的长达五年的法律诉讼结束,AMD获得了制造和销售全部Am386系列处理器的权力。
1993年4月--AMD和富士建立合资公司,共同生产闪存产品。
1993年4月--AMD推出Am486微处理器系列的第一批成员。
1993年7月--Fab 25在奥斯丁开始动工。
1993--AMD宣布AMD-K5项目开发计划。
1994年1月--康柏计算机公司和AMD建立长期合作关系。根据合作协议,康柏计算机将采用Am485微处理器。
1994年2月--AMD员工开始迁往AMD在森尼韦尔的另外一个办公地点。
1994年2月--Digital Equipment 公司成为Am486微处理器的组装合作伙伴。
1994年3月10日--联邦法院陪审团裁决AMD拥有对287数学协处理器中的Intel微码的所有权。
1994年5月1日--AMD庆祝创立25周年,并在森尼韦尔和奥斯丁分别邀请了Rod Stewart和Bruce Hornsby献艺。
1995-1999 --从变革到超越
AMD在这段时期的发展主要是通过提供越来越具竞争力的产品,不断地开发出对于大批量生产至关重要的制造和处理技术,以及加强与战略性合作伙伴的合作关系而实现的。在这段时期,与基础设施、软件、技术和OEM合作伙伴的合作关系非常重要,它使得AMD能够带领整个行业向创新的平台和产品发展,在市场中再次引入竞争。
1995年,AMD和NexGen两家公司的高层主管首次会面,探讨了一个共同的梦想:创建一种能够在市场中再次引入竞争的微处理器系列。这些会谈促使AMD在1996年收购了NexGen公司,并成功地推出了AMD-K6? 处理器。AMD-K6处理器不仅实现了这些起点很高的目标, 而且可以充当一座桥梁,帮助AMD推出它的下一代AMD 速龙? 处理器系列。这标志着该公司的真正成功。
AMD速龙 处理器在1999年的成功推出标志着AMD终于实现了自己的目标:设计和生产一款业界领先、自行开发、兼容Microsoft Windows的处理器。AMD首次推出了一款能够采用针对AMD处理器进行了专门优化的芯片组和主板、业界领先的处理器。AMD速龙 处理器将继续为该公司和整个行业创造很多新的记录,其中包括第一款达到历史性的1GHz(1000MHz)主频的处理器,这使得它成为了行业发展历史上最著名的处理器产品之一。AMD速龙 处理器和基于AMD速龙 处理器的系统已经获得了全球很多独立刊物和组织颁发的100多项著名大奖。
在推出这款创新的产品系列的同时,该公司还具备了足够的生产能力,可以满足市场对于其产品的不断增长的需求。1995年,位于得克萨斯州奥斯丁的Fab 25顺利建成。在Fab 25建成之前,AMD已经为在德国德累斯顿建设它的下一个大型生产基地做好了充分的准备。与Motorola的战略性合作让AMD可以开发出基于铜互连、面向未来的处理器技术,从而让AMD成为了第一个能够利用铜互连技术开发兼容Microsoft Windows的处理器的公司。这种共同开发的处理技术将能够帮助AMD在Fab 30稳定地生产大批的AMD速龙 处理器。
通过提供针对双运行闪存设备的行业标准,AMD继续保持着它在闪存技术领域的领先地位。闪存已经成为推动当时的技术繁荣的众多技术的重要组件。手提电话和互联网加大了市场对于闪存的需求,而且它的应用正在变得日益普遍。AMD范围广泛的闪存设备产品线当时已经能够满足手提电话、汽车导航系统、互联网设备、有线电视机顶盒、有线电缆调制解调器和很多其他应用的内存要求。
通过多种可以为客户提供显着竞争优势的闪存和微处理器产品,能稳定生产大量产品、业界领先的全球性生产基地,以及面向未来、富有竞争力的产品和制造计划,AMD得以在成功地渡过一个繁荣时期之后,顺利地进入新世纪。
历史回顾
1995--富士-AMD半导体有限公司(FASL)的联合生产基地开始动工。
1995--Fab 25建成。
1996--AMD收购NexGen。
1996--AMD在德累斯顿动工修建Fab 30。
1997--AMD推出AMD-K6处理器。
1998--AMD在微处理器论坛上发布AMD速龙处理器(以前的代号为K7)。
1998--AMD和Motorola宣布就开发铜互连技术的开发建立长期的伙伴关系。
1999--AMD庆祝创立30周年。
1999--AMD推出AMD速龙处理器,它是业界第一款支持Microsoft Windows计算的第七代处理器。
2000---
有一件事是毋庸置疑的,那就是AMD将会继续秉持它过去所坚持的理念:来自竞争的驱动力,对客户的关注,创新的产品,以及了解和适应变革的能力。最重要的是,该公司的未来将由AMD员工塑造。他们的长期努力已经让AMD成为了一个成功的、传奇性的公司。
2000--AMD宣布Hector Ruiz被任命为公司总裁兼COO。
2000--AMD日本分公司庆祝成立25周年。
2000--AMD在第一季度的销售额首次超过了10亿美元,打破了公司的销售记录。
2000--AMD的Dresden Fab 30开始首次供货。
2001--AMD推出AMD 速龙? XP处理器。
2001--AMD推出面向服务器和工作站的AMD 速龙 MP 双处理器。
2002--AMD 和 UMC宣布建立全面的伙伴关系,共同拥有和管理一个位于新加坡的300-mm晶圆制造中心,并合作开发先进的处理技术设备。
2002--AMD收购Alchemy Semiconductor,建立个人连接解决方案业务部门。
2002--Hector Ruiz接替Jerry Sanders,担任AMD的首席执行官。
2002--AMD推出第一款基于MirrorBit™ 架构的闪存设备。
2003-AMD 推出面向服务器和工作站的AMD Opteron™(皓龙) 处理器
2003-AMD 推出面向台式电脑 和笔记簿电脑的AMD 速龙™ 64处理器
2003-AMD推出 AMD 速龙™ 64 FX处理器. 使基于AMD 速龙™ 64 FX处理器的系统能提供影院级计算性能.
x86 泛指一系列基于Intel 8086且向后兼容的中央处理器指令集架构。最早的8086处理器于1978年由Intel推出,为16位微处理器。
Intel在早期以 80x86 这样的数字格式来命名处理器,包括Intel 8086、80186、80286、80386以及80486,由于以“86”作为结尾,因此其架构被称为“x86”。由于数字并不能作为注册商标,因此Intel及其竞争者均在新一代处理器使用可注册的名称,如奔腾(Pentium)、酷睿(Core)、锐龙(Ryzen,AMD推出)。
x86的32位架构一般又被称作IA-32,全名为“ I ntel A rchitecture, 32 -bit”。其64位架构由AMD率先推出,并被称为“AMD64”。之后也被Intel采用,被其称为“Intel 64”。一般也被称作“x86-64”、“x64”。
值得注意的是,Intel也推出过IA-64架构,虽然名字上与“IA-32”相似,但两者完全不兼容,并不属于x86指令集架构家族。
基本介绍中文名 :Intel x86 套用行业 :计算机硬体制造 适用范围 :晶片处理器 属性 :晶片运行指令集 制造商 :Intel发展历史,架构模式,实时模式,16位保护,32位保护,系统管理模式,MMX和之后,3DNow!,SSE,SSE2,SSE3,SSE4,64位架构,虚拟,生产商, 发展历史 x86架构于1978年推出的Intel 8086中央处理器中首度出现,它是从Intel 8008处理器中发展而来的,而8008则是发展自Intel 4004的。8086在三年后为IBM PC所选用,之后x86便成为了个人计算机的标准平台,成为了历来最成功的CPU架构。 其他公司也有制造x86架构的处理器,计有Cyrix(现为VIA所收购)、NEC集团、IBM、IDT以及Tran *** eta。Intel以外最成功的制造商为AMD,其早先产品Athlon系列处理器的市场份额仅次于Intel Pentium。 8086是16位处理器;直到1985年32位的80386的开发,这个架构都维持是16位。接着一系列的处理器表示了32位架构的细微改进,推出了数种的扩充,直到2003年AMD对于这个架构发展了64位的扩充,并命名为AMD64。后来Intel也推出了与之兼容的处理器,并命名为Intel 64。两者一般被统称为 x86-64 或 x64 ,开创了x86的64位时代。 值得注意的是Intel早在1990年代就与HP合作提出了一种用在安腾系列处理器中的独立的64位架构,这种架构被称为IA-64。IA-64是一种崭新的系统,和x86架构完全没有相似性;不应该把它与 x86-64 或 x64 弄混。 架构模式 x86架构是重要地可变指令长度的CISC(复杂指令集计算机, C omplex I nstruction S et C omputer)。字组(word, 4位元组)长度的存储器访问允许不对齐存储器地址,字组是以低位位元组在前的顺序储存在存储器中。向前兼容性一直都是在x86架构的发展背后一股驱动力量(设计的需要决定了这项因素而常常导致批评,尤其是来自对手处理器的拥护者和理论界,他们对于一个被广泛认为是是落后设计的架构的持续成功感到不解)。但在较新的微架构中,x86处理器会把x86指令转换为更像RISC的微指令再予执行,从而获得可与RISC比拟的超标量性能,而仍然保持向前兼容。x86架构的处理器一共有四种执行模式,分别是真实模式,保护模式,系统管理模式以及虚拟V86模式。 在这篇简短的文章中出现的指令和暂存器助忆符号的名称,都在Intel档案中有所指定以及使用在 Intel组译器(Assembler)中(和兼容的,比如微软的MASM、Borland的TASM、CAD-UL的as386 等等)。一个以Intel语法指定的指令"mov al, 30h"与AT&T语法的"movb x30, %al"相当,都是会被转译为两个位的机器码"B0 30"(十六进制)。你可以发现在这段程式中的"mov"或 "al",都是原来的Intel助忆符号。如果我们想要的话,我们可以写一个组译器由代码' move immediate byte hexadecimally encoded 30 into low half of the first register' (移动立即值位十六进制编码30到第一个暂存器的低半部位),来产生相同的机器码。然而,传统上汇编器(Assembler)一直使用Intel的助忆符号。 x86汇编语言会在x86 汇编语言文章中有更详细的讨论。 实时模式 Intel 8086和8088有14个16位暂存器。其中四个(AX, BX, CX, DX)是通用目的(尽管每个暂存器都有附加目的;举个例子:只有CX可以被用来当作 loop (循环)指令的计数器。)每个暂存器可以被当成两个分开的位元组访问(因此BX的高位可以被当成BH,低位则可以当成BL)。除了这些暂存器,还有四个区段暂存器(CS、DS、SS、ES)。他们用来产生存储器的绝对地址。还有两个指针暂存器(SP是指向堆叠的底部,BP可以用来指向堆叠或存储器的其它地方)。两个指针暂存器(SI和DI)可以用来指向数组的内部。最后,有标志暂存器(包含状态标志比如进位、溢出、零标志,等等)。以及IP是用来指向目前运行指令的地址。 在实模式下,存储器的访问是被区段开来。为了得到最后20位的存储器地址,要将区段的地址往左移动4位,并且加上偏移的地址。因此,实模式下总共可以定址的空间是2位元组,或者是1MB,于1979年是相当让人印象深刻的象征。在实模式下有两种定址模式:near和far。在 far模式,区段跟偏移都需要被指定;在near模式,只需要偏移模式被指定,而存储器区段是由适当的区段暂存器获得。以数据而言是使用DS暂存器,代码是CS暂存器,堆叠是SS暂存器。举个例子,如果DS是A000h且SI是5677h,DS:SI会指向计忆体的绝对地址DS × 16 + SI = A5677h 在这种架构下,两对不同的区段/偏移可以指向一个相同的绝对地址。因此如果DS是A111h且SI是4567h,DS:SI会指向跟上一段相同的A5677h。除了duplicity之外,这种架构无法同时一次拥有4个以上的区段。此外,CS、DS和SS是为了程式正确功能而必须的,因此仅仅只有ES可以被用来指向其它的地方。这种模式原本是为了与Intel 8085兼容,导致程式设计师永无止尽的痛苦。 除了以上所说的,8086也拥有8-bit的64K(另一种说法是16-bit的32K)输入输出(en:I/O)空间,以及一个由硬体支持的64K(一个区段)存储器堆叠。只有words(2位元组)可以被推入到堆叠中。堆叠是由存储器的上端往下成长,他的底端是由SS:SP指向。有256个中断(interrupts),可以由硬体或是软体同时组成。中断是可以串连在一起,使用堆叠来储存返回被中断的程式地址。 16位保护 Intel 80286可以在不改变任何东西下,支持8086的实模式16位软体,然而它也支持额外的工作模式称为保护模式,可以将可定址的物理记忆体扩充到16MB,可定址的虚拟记忆体最大到 1GB。这是使用节区暂存器来储存在节区表格中的索引值。处理器中有两个这样的表格,分别为GDT和LDT,每一个可以储存最多8192个节区的描述子,每一个节区可以给予最大到64KB的存储器访问。节区表格提供一个24位的基底地址(base address),可以用此基底地址增加想要的偏移量来创造出一个绝对地址。此外,每一个节区可以被赋予四种许可权等级中的一种(称为 "rings")。 尽管这个推出的功能是一项进步,但是他们并没有被广泛地使用,因为保护模式的作业系统无法运行现有的实模式软体。这样的能力只有在随后80386处理器的虚拟86模式中出现。 在同时,作业系统比如OS/2尝试使用类似桌球的方法,让处理器在保护和实模式间切换。这样都会让计算机变慢且不安全,像是在实模式下的程式可以轻易地使计算机当机。OS/2也定义了限制性的程式设计规则允许"Family API"或"bound"程式可以在实模式或保护模式下运行。然而这是给原本为保护模式下设计的程式有关,反之则不然。保护模式程式并不支持节区选择子和物理记忆体之间的关系。有时候会错误地相信在16位保护模式下运行实模式的程式,导致IBM必须选择使用Intel保留给BIOS的中断调用。事实上这类的程式使用任意的选择子数值和使用在上面提到的“节区运算”的方式有关。 这个问题也在Windows 3.x上出现。这个推出版本想要在16位保护模式下运行程式,而先前的版本只能在实模式下运行。理论上,如果Windows 1.x或2.x程式是写得“适当”且避免使用节区运算的方式,它就有可能在真实和保护模式两者下运行。Windows程式一般来说都会避免节区运算,这是因为Windows实现出软体的虚拟记忆体方式,及当程式不运行时候,搬移存储器中的代码和数据,所以 *** 作绝对地址的方式是很危险的;当程式不运行时,被认为要保持存储器区块的“handles”,这样的handles已经非常相当于保护模式的选择子。在保护模式下的Windows 3.0运行一个旧的程式,会触发一个警告对话盒,建议在实模式下运行Windows(推测还是仍然可以使用扩充存储器,可能是在80386机器用EMM386模拟,因此它并不被局限于640KB)或是从厂商那更新到新的版本。好的行为之程式可能可以使用特别的工具来避免这样的对话盒。不可能有些GUI程式在16位保护模式下运行,且其它GUI程式在实模式运行,可能是因为这会需要两个分开的环境且会依于前面所提到的处理器在两个模式间的桌球效应。从Windows 3.1版开始,实模式就消失了。 32位保护 Intel 80386推出后,也许是到目前为止x86架构的最大跃进。除了需要值得注意的Intel 80386SX是32位架构但仅只有24位定址(和16位数据汇流排)。除此之外其他架构都是32位 - 所有的暂存器、指令集、输出输入空间和存储器定址。为了能够在后者所说的功能工作,要使用32位扩充的保护模式。然而不像286,386所有的区段可以使用32位的偏移量,即使存储器空间有使用区段,但也允许应用程式访问超过4GB空间而不需要区段的分隔。此外,32位保护模式提供分页的支持,是一种让虚拟记忆体得以实现的机制。 没有新的通用暂存器被加入。所有16位的暂存器除了区段暂存器外都扩充为32位。Intel在暂存器的助记符号上加入“E”来表示(因此扩充的AX变成EAX,SI变成ESI,依此类推)。因为有更多的暂存器数量、指令、和运算单元,因此机器码的格式也被扩充。为了提供与先前的架构兼容,包含运行码的区段可以被标示为16或是32位的指令集。此外,特殊的前置符号也可以用来在16位的区段包含32位的脚本,反之亦然。 分页跟区段的存储器访问是为了支持现在多任务作业系统所必须要的。Linux、386BSD、Windows NT和Windows 95都是一开始为386所发展,因为它是第一颗提供可靠地程式分离存储器空间的支持(每个程式拥有自己的定址空间)以及可以在必要的情况下打断他们程式的运行(使用ring,一种x86保护模式下权力分级的名称)。这种386的基本架构变成未来所有x86系列发展的基础。 Intel 80386数学辅助运算处理器也在集成到这个CPU之后的x86系列中,也就是Intel 80486。新的FPU可以帮助浮点数运算,对于科学计算和图形设计是非常重要。 系统管理模式 Intel首次在80386SL之后引入其x86体系结构。 MMX和之后 1996年Intel的MMX(AMD认为这是矩阵数学扩充Matrix Math Extensions的缩写,但大多数时候都被当成Multi-Media Extension,而Intel从来没有官方宣布过词源)技术出现。尽管这项新的技术得到广泛宣传,但它的精髓是非常简单的:MMX定义了八个64位SIMD暂存器,与Intel Pentium处理器的FPU堆叠有相重叠。不幸的是,这些指令无法非常简单地对应到由原来C编译器所产生的脚本中。MMX也只局限于整数的运算。这项技术的缺点导致MMX在它早期的存在有轻微的影响。现今,MMX通常是用在某些2D影片应用程式中。 3DNow! 1997年AMD推出3DNow!,是对于MMX的SIMD的浮点指令增强(针对相同的 MMX 暂存器)。尽管这些也没有解决编译器的难题,但这项技术的推出符合了PC上的3D休闲娱乐应用程式之崛起。3D游戏开发者和3D绘图硬体制造商在AMD的AMD K6和Athlon系列处理器上,使用3DNow!来帮助增加他们的效能。微软后来也在其开发的Direct X7.0中加入针对3DNow!的最佳化,使当时的Athlon处理器在3D游戏效能上首次全面超过对手 Intel 的Pentium 3处理器。 SSE 在1999年Intel推出SSE指令集,增加了八个新的128-bit暂存器(不跟其他的暂存器重叠使用)。这些指令类似于AMD的3DNow!,主要是增加浮点数运算的SIMD指令。 SSE2 2001年Intel推出SSE2指令集,增加了: 完整地补充了整数指令(与MMX相似)到原来的SSE暂存器。 64位的SIMD浮点运算指令到原来的SSE暂存器。 第一个的增加导致MMX几乎是过时可以舍弃的,第二个则允许这些指令可以让传统的编译器现实地产生。 SSE3 于2004年随着Pentium 4处理器的改版 Prescott 核心推出。SSE3增加特定的存储器和thread-handling指令来提升Intel超执行绪的效能,在科学计算方面也有增强。 SSE4 2007年1月,Intel公开发表使用其45纳米制程"Penryn"晶片家族的PC和伺服器。"Penryn"是这一系列依据英特尔Core微架构之笔记本电脑、台式机和伺服器晶片家族的代号,首次正式发布时共有16款处理器,除了一款Intel Core 2 Extreme QX9650是针对普通台式机市场外,其余的双核Xeon 5200系列和四核5400系列都是伺服器处理器。基本上Penryn是继Merom之后的缩小版Core 2 Duo,再加上47条新的SSE4指令集等额外配备。SSE4指令集之首次发表时间为2006年9月的英特尔开发者论坛(IDF,Intel Developer Forum)。 另外,x86处理器制造厂商AMD也在该公司最新K10架构的Phenom处理器中,加入4条新的SSE4A指令集。注意,SSE4与SSE4A无法彼此兼容。 64位架构 到2002年,由于32位特性的长度,x86的架构开始到达某些设计的极限。这个导致要处理大量的信息储存大于4GB会有困难,像是在资料库或是影片编辑上可以发现。 Intel原本已经决定在64位的时代完全地舍弃x86兼容性,推出新的架构称为IA-64技术作为他的Itanium处理器产品线的基础。IA-64与x86的软体天生不兼容;它使用各种模拟形式来运行x86的软体,不过,以模拟方式来运行的效率十分低下,并且会影响其他程式的运行。 AMD主动把32位x86(或称为IA-32)扩充为64位。它以一个称为AMD64的架构出现(在重命名前也称为x86-64),且以这个技术为基础的第一个产品是单核心的Opteron和Athlon 64处理器家族。由于AMD的64位处理器产品线首先进入市场,且微软也不愿意为Intel和AMD开发两套不同的64位作业系统,Intel也被迫采纳AMD64指令集且增加某些新的扩充到他们自己的产品,命名为EM64T架构(显然他们不想承认这些指令集是来自它的主要对手),EM64T后来被Intel正式更名为Intel 64。 这是由非Intel的制造商所发起和设计的第一次重大的x86架构升级。也许更重要的,它也是第一次Intel实际上从外部来源接受这项本质的技术。 虚拟 虚拟x86是很困难的,因为它的架构并未达到波佩克与戈德堡虚拟化需求。然而,有好几个商业的虚拟x86产品,比如VMware和微软的Virtual PC。Intel和AMD两者都有公开宣布未来的x86处理器将会有新的增强来容易达到更有效率的虚拟。Intel针对这项虚拟特性的代号称为"Vanderpool"和"Silvervale";AMD则使用"Pacifica"这个代号。 生产商 有多家公司设计、生产并售卖x86处理器及其兼容产品,其中包括: 英特尔(Intel) AMD Chips and TechnologiesCyrix(被VIA收购) IBM IDT 国家半导体(NS,National Semiconductor) 日本电气(NEC) NexGen(被AMD收购) Rise Technology(被矽统技术收购) SGS-Thomson 矽统(SiS) 德州仪器(TI,Texas Instruments) 全美达(Tran *** eta) 联华电子(UMC) 威盛电子(VIA)。
等离子电视、平板电视、高清电视,当这些新一代数字电视还在逐步走近我们的生活时,科学家已经在激光电视的开发上取得了重大进展。
激光电视是利用半导体泵浦固态激光工作物质,产生红、绿、蓝三种波长的连续激光作为彩色激光电视的光源,通过电视信号控制三基色激光扫描图像。激光电视与传统电视相比具有如下特点:
(1) 激光电视机色彩鲜明、亮度高、屏幕尺寸灵活,并且鲜艳的图像可以投射到各种材料表面,甚至是弯曲表面。这种系统还可适应目前使用的所有电视标准,即PAL制、NC制、SECAM 制VGA或高清晰度电视。
(2) 激光电视是21世纪的电视机市场中最强的竞争者,它较等离子体电视机工艺简单,色彩鲜艳;激光电视机的亮度比大屏幕液晶电视机亮,且不受视角的方向性影响。
(3) 激光是100%单色光,激光电视红、绿、蓝三色光分别调制,彩色效果非常理想。它的室温寿命一般可达10万小时,经高温老化试验推算出的室温寿命可达百万小时,因此它是一种长寿命高可靠性的产品。
(4) 激光电视可以发展成为特超大屏幕电视、电影和投影一体化多功能产品。
激光电视的研究情况
目前国际上有德国LDT公司、韩国三星公司、日本索尼公司和日本三菱公司开展了激光电视的研究,日本索尼公司开发的激光电视主要采用“直扫描”和“线扫描”方式,德国LDT公司、韩国三星公司则采用“点扫描”方式。而日本三菱公司已于近期推出其采用三基色激光光源的DLP背投电视,支持最新的色彩空间国际标准,去掉了色轮之后,单片DMD芯片也有了上佳的色彩表现。这款激光DLP背投电视与以往DLP背投最大的不同是取消了灯泡作为光源,以及分色用的色轮,转而采用三个半导体激光器发出三基色光源,通过光纤传到给DMD芯片,由于在光纤内部的多次反射,降低了激光特有的干涉条纹。同时,为了实现图像的还原,三菱还开发了图像调制系统NCM(自然色彩矩阵),将视频信号中的亮度型号与色彩信号分离,更将色彩信号分解为12组单独色相进行控制,以得到最佳的色彩还原效果。因此,这台激光背投的色彩还原能力得到了IEC国际电工委员会的认可,认为其能够达到色彩空间的宽广色域,比目前采用的广播电视信号色彩空间提升1.8倍。日本三菱公司利用彩色激光制造的新一代轻型高清电视,其图像质量可超过电影画质,产品预计于明年年底上市。
我国对激光显示技术的关注也早已开始,上世纪80年代末,激光全色显示技术就已进入我国863计划。2002年我国在该技术领域实现重大突破,推出全固态激光显示原理样机,2003年研制出60英寸背投激光显示机,2005年推出84英寸背投激光显示机,最近又研制成功140英寸大屏幕激光显示样机。这些科研成果标志着我国进入国际激光彩色显示技术开发的先进行列,为抢占彩色激光电视产业制高点奠定坚实的基础。
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)