据了解,14纳米及14纳米以上制程的半导体芯片可满足70%的市场需求。我国在2021年实现并初步完成了28纳米芯片的自主化生产。没过多久,业界便传来14纳米芯片将在2022年年底实现量产的消息。
我是柏柏说 科技 ,资深半导体 科技 爱好者。本期为大家带来的是:国产半导体将在2022年年底实现14纳米芯片的自主化量产。
老规矩,开门见山。2021年6月23日,环球网消息。中国电子信息产业发展研究院,电子信息研究所所长 温晓君 在接受采访时表示:“ 我国将在2022年底完成14纳米制程的攻坚,完成14纳米制程芯片的量产 ”。
在这里穿插一点:或许是意识到自己无法阻拦我国芯片制程的发展,ASML近期提高了自家中端光刻机的售价。讽刺的是,ASML刚对自家的中低端光刻机降价,紧接着又对自家的中端光刻机提价,其意图不言而喻。
值得一提的是:结合我国近些年来对半导体行业的大力扶持,国产半导体厂商在芯片代工、集成电路领域中的突破。早先业界人士预测, 28纳米将是国产芯片代工行业的制程新起点,28纳米与14纳米制程预计在2021年、2022年实现。
事实上,我国的确在2021年实现了28纳米制程的突破,如今业界有关于14纳米制程的预测,也得到了温晓君的确定。种种迹象表明,国产14纳米芯片真的要来了。我国破冰14纳米制程,将给国产半导体行业带来哪些改观呢?
首先我们要弄明白目前半导体市场的趋势。虽说比起7纳米、5纳米制程,14纳米制程比较落后。但在硅基半导体市场中, 14纳米、28纳米制程依旧是主流。 目前 14纳米及14纳米以上制程的半导体芯片,占据整个半导体市场的70%。 毕竟智能 汽车 、智能家居等中低端半导体制程芯片占据了大部分的芯片市场。
即便不谈14纳米制程的半导体芯片,单是我国在今年掌握的28纳米制程芯片便占据了近半的芯片市场,28纳米制程也被业界称为“黄金线”制程。
据了解,目前大多数的中低端5G芯片,其采用的工艺大多都是14纳米、12纳米。补充一点,12纳米与14纳米之间的差距并不大,类似于台积电的5纳米与4纳米之间的区别,只是在工艺上,晶体管排序上做出了优化。即12纳米是14纳米制程的改进版,其设备并未做出太大改变。
也就是说,华为的5G麒麟中低端处理器芯片,有望在明年实现量产。尽管不能解决华为在高端制程领域中的“芯”疾,至少可以在一定程度上缓解华为在中低端消费者领域中的压力。不只是华为代表的智能手机领域,在PC端市场中,以龙芯、飞腾为代表的PC端市场,也会因此受益。
例如龙芯采用自研指令集架构“loong Arch”制成的龙芯3A5000处理器芯片,14纳米制程足够满足国内大多数PC端厂商的需求。而且不同于手机处理器这种高精密芯片,PC端芯片对于制程的要求要缓和一些。也就是说,,由14纳米、12纳米代工制成的PC端芯片,可以满足大多数的日常工作需要。
温晓君介绍,目前我们在14纳米制程上已经攻克了大多数的难题,刻蚀机、薄膜沉积等关键技术设备都实现了从无到有的突破,并已投入供应链使用。此外,有关封装集成技术方面的突破,我国实现了全面量产。光刻胶、抛光剂等上百种材料也进入了批量销售。以上成果可以助力我国摆脱国外技术限制,实现国产集成电路的全产业链覆盖。
我国成功攻坚14纳米项目,有助于我们更好地对抗国外半导体行业的打压。虽说我们与国外先进半导体制程之间的距离比较大,但路是一步一步走的。目前我们的主要任务是确保自己在半导体领域中不会被主流技术落下。因为在确保市场营收的基础上进军高端技术行业,显然是更好地选择。
祝愿国产半导体行业愈发强大,在半导体领域中所向披靡。对于我国破冰14纳米制程项目,大伙有什么想说的呢?对于我国半导体行业的发展,你有什么好的建议和意见吗?欢迎在下方留言评论。我是柏柏说 科技 ,资深半导体 科技 爱好者。关注我,带你了解更多资讯,学习更多知识。
“在半导体中,只有电子能导电”这句话对吗?可能大部分人都会认为这句话是错的.“导体和半导体的区别在于前者只有电子参与导电,而后者既有电子又有空穴参与导电”这句话对吗?可能大部分人都会认为这句话是对的.其依据是:在半导体中同时存在二种载流子:自由电子与空穴,半导体在外电场的作用下,一方面带负电的自由电子定向移动形成电子电流,另一方面带正电的空穴也会定向移动形成空穴电流.半导体中流过的总电流是这两个电流之和.事实果真如此吗?先来看看什么是空穴?空穴就是半导体的共价键结构中应该有价电子而实际上没有价电子的地方.空穴一般在如下二种情况下形成:一是本征激发(由于半导体本身的温度不是绝对零度,半导体中的某些价电子能够获得足够的能量从而摆脱共价键的束缚,从共价键结构中跑出来变成自由电子,在半导体的共价键结构中便产生了一个空位,形成空穴);二是P型半导体(本征半导体中掺入三价杂质元素时,由于三价杂质元素只能提供三个电子,缺少一个电子,在半导体的共价键结构中便产生了一个空位,形成空穴).当在半导体材料的两端外加电场时,一方面半导体内的自由电子在外电场的作用下会产生定向移动,从而形成电子电流.另一方面在外电场的作用下半导体中的价电子也会从原来的位置跑出来成为自由电子,在外电场的作用下定向移动后又进入到另外的一个空位再次成为价电子,形成了一个不是由原半导体中的自由电子所形成的一个电子电流.这个电流我们暂时称为“价电流”(价电流并非是价电子的移动形成,而是价电子成为自由电子后,定向移动一定距离后又变成价电子的过程中所形成的电流”.“价电流”实际上也是电子电流,只不过不是我们通常认为的半导体内部已经存在的自由电子所形成的罢了.半导体中流过的总电流实际上是电子电流与“价电子”电流共同移动所形成的电流,所以我们的结论是:在半导体内部只能是电子能导电.这便是半导体内部导电的事实.那么,为何现行的电子技术书籍中都会出现空穴带正电,空穴定向移动形成空穴电流这一说法呢?实际上是从另一个角度来分析问题,把“价电子”在半导体内部的定向移动看做是空穴在向与“价电子”移动方向的反方向移动.为了便于理解,教材中一般都是把半导体中“价电子”的移动看成是空穴在移动,价电子的移动方向与空穴的移动方向相反,由于价电子是带负电的,我们就认为空穴带正电的.半导体中流过的总电流就成为了带负电的自由电子移动所形成的电子电流与带正电的空穴移动所形成的空穴电流之和,这便是教材中所描述的半导体内部导电机制.打个很形象的比喻:这就好比在戏院看戏,设戏院共有二十排座位,假设每排只有一个座位,从第二排起到第二十排都坐满了人,只有第一排无人坐,戏开演后,第二排上的观众看见第一排位置无人坐,就从第二排坐到第一排上去,第二排就出现了空位,第三排上的观众又坐到第二排去,依次类推,原来第一排是空位子,后来第二排是空位子,再后来第三排是空位子,最后的空位置出现在第二十排,空位置从第一排到了第二十排,是观众的移动造成的,位子本身并不会移动.说的再形象点,电子好比是萝卜,空穴好比是坑,我们常常说一个萝卜一个坑,萝卜可以拔走,但留下的坑确是没法动的.因次,实际上空穴本身是不会移动的,更谈不上带电.我们的结论是:“在半导体中,只有电子能导电”这句话确确实实是正确的(第二个问题也清楚了).欢迎分享,转载请注明来源:内存溢出
评论列表(0条)