寻求半导体心得

寻求半导体心得,第1张

顾名思义:常温下导电性能介于导体(conductor)与绝缘体(insulator)之间的材料,叫做半导体(semiconductor).物质存在的形式多种多样,固体、液体、气体、等离子体等等。我们通常把导电性和导电导热性差或不好的材料,如金刚石、人工晶体、琥珀、陶瓷等等,称为绝缘体。而把导电、导热都比较好的金属如金、银、铜、铁、锡、铝等称为导体。可以简单的把介于导体和绝缘体之间的材料称为半导体。与导体和绝缘体相比,半导体材料的发现是最晚的,直到20世纪30年代,当材料的提纯技术改进以后,半导体的存在才真正被学术界认可。半导体的分类,按照其制造技术可以分为:集成电路器件,分立器件、光电半导体、逻辑IC、模拟IC、储存器等大类,一般来说这些还会被分成小类。此外还有以应用领域、设计方法等进行分类,最近虽然不常用,单还是按照IC、LSI、VLSI(超大LSI)及其规模进行分类的方法。此外,还有按照其所处理的信号,可以分成模拟、数字、模拟数字混成及功能进行分类的方法。半导体五大特性∶电阻率特性,导电特性,光电特性,负的电阻率温度特性,整流特性。★在形成晶体结构的半导体中,人为地掺入特定的杂质元素,导电性能具有可控性。★在光照和热辐射条件下,其导电性有明显的变化。半导体的发现实际上可以追溯到很久以前, 1833年,英国巴拉迪最先发现硫化银的电阻随着温度的变化情况不同于一般金属,一般情况下,金属的电阻随温度升高而增加,但巴拉迪发现硫化银材料的电阻是随着温度的上升而降低。这是半导体现象的首次发现。不久, 1839年法国的贝克莱尔发现半导体和电解质接触形成的结,在光照下会产生一个电压,这就是后来人们熟知的光生伏特效应,这是被发现的半导体的第二个特征。 在1874年,德国的布劳恩观察到某些硫化物的电导与所加电场的方向有关,即它的导电有方向性,在它两端加一个正向电压,它是导通的;如果把电压极性反过来,它就不导电,这就是半导体的整流效应,也是半导体所特有的第三种特性。同年,舒斯特又发现了铜与氧化铜的整流效应。1873年,英国的史密斯发现硒晶体材料在光照下电导增加的光电导效应,这是半导体又一个特有的性质。 半导体的这四个效应,(jianxia霍尔效应的余绩──四个伴生效应的发现)虽在1880年以前就先后被发现了,但半导体这个名词大概到1911年才被考尼白格和维斯首次使用。而总结出半导体的这四个特性一直到1947年12月才由贝尔实验室完成。很多人会疑问,为什么半导体被认可需要这么多年呢?主要原因是当时的材料不纯。没有好的材料,很多与材料相关的问题就难以说清楚。半导体于室温时电导率约在10ˉ10~10000/Ω·cm之间,纯净的半导体温度升高时电导率按指数上升。半导体材料有很多种,按化学成分可分为元素半导体和化合物半导体两大类。除上述晶态半导体外,还有非晶态的有机物半导体等和本征半导体。 最早的实用“半导体”是「电晶体(Transistor)/ 二极体(Diode)」。 一、在 无�电收音机(Radio)及 电视机(Television)中,作为“讯号放大器 /整流器”用。 二、近来发展「太阳能(Solar Power)」,也用在「光电池(Solar Cell)」中。三、半导体可以用来测量温度,测温范围可以达到生产、生活、医疗卫生、科研教学等应用的70%的领域,有较高的准确度和稳定性,分辨率可达0.1℃,甚至达到0.01℃也不是不可能,线性度0.2%,测温范围-100~+300℃,是性价比极高的一种测温元件。世界半导体行业巨头纷纷到国内投资,整个半导体行业快速发展,这也要求材料业要跟上半导体行业发展的步伐。可以说,市场发展为半导体支撑材料业带来前所未有的发展机遇。所以我们要好好学习,正兴祖国半导体事业发展,希望祖国越来越强大

半导体发光二极管是一种极为重要的发光器件,它们不但在电子仪表显示、照明、大规模集成电路、光通信等方面有着广泛的应用,在研究领域也一直倍受人们的关注。本文对半导体发光二极管的正向电特性进行了较为系统的研究,其中的主要工作可以概括如下: 1.对现有的实验仪器TH2819 Precision LCR Meter进行了开发与改进,实现了计算机对它的远程控制,大大提高了测试效率根据实验需要,自行组建了实验装置,包括低频电学测试装置和交流电压调制发光实验装置。 2.采用基于并联模式的交流小信号法,在20Hz至100kHz的频率范围内,对半导体发光二极管的正向交流电特性进行了检测,并对实验结果进行了电压分段讨论。3.用低频电学测试装置,在1Hz至20Hz的频率范围内,对半导体发光二极管的电容特性进行了测试。实验结果表明,所有发光二极管在明亮发光时的电容仍为负值。 4.用交流电压调制发光装置对发光二极管的相对发光强度和发光相角进行了检测,并对相对发光强度和发光相角随频率变化的特征曲线进行了定性解释。 5.在我们测试的频率范围内,半导体发光二极管中普遍存在着负电容现象,并且测试频率越低、正向电压越大,负电容现象就越显著相对发光强度的频率特性曲线表明,影响发光二极管负电容的因素除了载流子的强辐射复合外,还有一个与频率密切相关的相位因子 6.通过对实验结果进行仔细分析,总结出负电容随电压、频率变化关系的经验公式。【关键词】:半导体发光二极管 正向交流小信号法 负电容 低频特性 相对发光强度 发光相角

坑试验怎么做?附详解!在半导体封装工艺中,d坑试验是用来评估键合参数以及键合可靠性的。键合工艺使用的材料一般是金线,铜线或铝线,其中铝线一般是在大功率的产品中使用,铜线在解决了可靠性的问题之后应用也越来越多。d坑试验数据能够指导工艺工程等部门进行工艺设计改进,优化。FA 在进行这种分析时,针对不同的产品类型,一般采用什么样的方法呢?本文介绍几种常见的方法。

1. 铝 (Al bond pad)+ 金线键合(Au wire bond) 目的:分离金球(bond ball)与bond pad,用于检查分析 IMC 和bond pad 试剂:10% NaOH溶液 温度:室温 腐蚀时间:约5分钟 (取决于样品) 方法说明:该方法是利用铝的两性,通过碱性溶剂把金球和bond pad之间的铝层溶掉,最终把bond pad和金线分离出来,用于检查分析。在腐蚀铝层时,金线不会被腐蚀掉。溶液浓度可根据产品特点进行调整,也有用氢氧化钾的,但不宜用高浓度的碱进行腐蚀,需要控制好时间,否则会对芯片造成损伤。

2. 铝 (Al bond pad)+ 金线键合(Au wire bond) 目的:检查bond pad,不关注bond ball 试剂:碘化钾,单质碘,纯水, KI : I2 : DI =115g : 65g : 100g 温度:室温 腐蚀时间:10分钟~15分钟 (取决于样品) 方法说明:该方法是直接把金溶掉,最终把bond pad暴露出来进行检查分析,在腐蚀金的同时,bond pad上面的铝层也会被腐蚀掉。 特点是对金的腐蚀速率较快,缺点是腐蚀不掉的残留物有时较难去除干净。当然去除金的方法还有多种,比如王水,汞等,但王水的氧化性太强,对很多材料都有腐蚀性或者负面影响,汞属于毒性很强的物质一般也不常用,在冶金上面会用于提取金。

3. 铝 (Al bond pad)+ 铜线键合(Cu wire bond) 目的:分离铜球(bond ball)与bond pad,用于检查分析 IMC 和bond pad 试剂:10% NaOH 温度:室温 腐蚀时间:约5分钟 (取决于样品) 方法说明:该方法是用氢氧化钠溶解铝层,但氢氧化钠不会腐蚀铜线,最终可以把bond pad和铜线分离出来,可以检查bond pad和IMC,与金线IMC检查的方法一样。

4. 铝 (Al bond pad)+ 铜线键合(Cu wire bond) 目的:溶解铜线,用于检查分析 bond pad,不需要保证铜线的完整性 试剂:发烟硝酸 温度:室温 腐蚀时间:30秒~ 1分钟 (取决于样品) 这时可以进行bond pad的检查,此时铝层还在pad上,如果需要进一步把铝层去除,可以接着做下面一步: 试剂:HCL (37% ) 温度:50 °C 腐蚀时间:1分钟~ 3分钟 (取决于样品) 方法说明:该方法是用发烟硝酸直接溶解铜线,但由于铝具有钝化作用而得以保留,该方法分两步分别把铜线和铝层溶解掉,可以检查bond pad的铝层形貌以及去掉铝层后的芯片pad。


欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/dianzi/9130221.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-04-25
下一篇 2023-04-25

发表评论

登录后才能评论

评论列表(0条)

保存