作者 | 海怪
来源 | 脑极体(ID:unity007)
意法半导体、英飞凌、恩智浦三家半导体企业先后从其母公司独立或重组之后,直到今天,一直是撑起欧洲半导体产业面子的“三巨头”。
之所以被称为“三巨头”,是因为自1987年以来,三家几乎从未跌出全球半导体企业20强,虽然排名有调换,但都没掉队。当然也再没有新兴的欧洲半导体企业进入这个头部榜单。
如今,在全球半导体市场中,这三巨头主要选择了工业和 汽车 等B端芯片市场,而避开了竞争激烈的移动终端及电脑等消费级芯片市场。
这就让芯片产业之外的人很少有机会听到三巨头的名声,也自然很少了解这三巨头在全球芯片市场所扮演的角色,以及三家当下的竞争格局和未来可能的发展前景。
那么,三巨头之间有哪些纠葛和关联?各自有哪些优势?顺着这些问题我们接着讨论下去。
三巨头的并购“排位赛”
由于三巨头将市场都定位在B端芯片市场,三家各自的技术和产品自然有重叠,因此不可避免会出现激烈的竞争。而在近几年三巨头的发展过程中,大规模并购其他半导体企业和技术公司,成为能够快速赶超对手的“常规”手段。
在2018年,曾传出“英飞凌试图收购意法半导体”的消息,最后可能因为法国政府的阻挠而告吹。甚至早在2007年,还有“意法半导体要收购英飞凌”的传闻。可见三巨头相互之间觊觎对方已久。
而三巨头的关系中,英飞凌和恩智浦的竞争最为激烈,双方都在 汽车 半导体领域深耕多年,且排名接近。2015年,恩智浦以118亿美元的价格,收购了美国的飞思卡尔半导体(Freescale Semiconductor),成为当年的天价收购案。完成此次收购后,恩智浦成功进入全球半导体厂商前十的行列,成为全球最大的车用半导体制造商,并且成为车用半导体解决方案与通用微型控制器(MCU)的市场龙头。
经此一战,英飞凌虽然在 汽车 半导体市场略占下风,但也没有停止并购扩张的脚步。为巩固其在功率半导体的领先地位,英飞凌在2015年率先以30亿美元现金并购美国国际整流器公司;又在去年4月,宣布以100亿美元的价格完成对美国赛普拉斯半导体公司的收购。
赛普拉斯半导体的产品,包括微控制器、连接组件、软件系统以及高性能存储器等,与英飞凌当先的功率半导体、 汽车 微控制器、传感器以及安全解决方案,形成了高度的优势互补,双方将在ADAS/AD、物联网和5G移动基础设施等高增长应用领域,提供更先进的解决方案。
简单来说,英飞凌的目的仍然是要加强 汽车 半导体产品的实力,试图超越恩智浦的 汽车 半导体业务。此外,英飞凌在MCU、电源管理和传感器芯片方面超过或接近意法半导体。
去年几乎同时,恩智浦又以17.6亿美元收购美国美满电子(Marvell)的无线连接业务,主要产品线是Marvell的Wi-Fi和蓝牙等连接产品。通过这一收购,恩智浦可以更好补强其在工业和 汽车 领域的无线通信实力。
相比之下,过去几年意法半导体在并购市场的动作较少,但也并非没有。2016年8月,意法半导体宣布收购奥地利微电子公司(AMS)的NFC和RFID reader的所有资产,获得相关的所有专利、技术、产品以及业务,以强化其在安全微控制器解决方案的实力,在移动设备、穿戴式、金融、身份认证、工业化、自动化以及物联网等领域的发展提供技术支持。
在2019年的TOP15半导体市场排名中,来自欧洲的三家企业只能排在12-14位。恩智浦收购飞思卡尔的红利已经消失。而英飞凌收购赛普拉斯之后,两家营收加起来,会使得英飞凌大幅提升排名进到前十名当中。
从半导体产品形态来看,英飞凌、意法半导体和恩智浦,都是模拟芯片或模数混合芯片企业。从近几年的产业趋势来看,模拟芯片产业的集中度不断提高,而且模拟芯片企业的并购重组主要发生在美国和欧洲之间。从恩智浦和英飞凌收购的案例中,我们可以看到其对模拟和模数混合芯片厂商的并购,而且标的几乎全部来自美国。
一方面说明美国模拟芯片整体的数量和实力都很强,一方面也能看出全球模拟芯片企业发展进入一个相对稳定发展的阶段,如果想要打破平衡,取得快速发展,并购重组和强强联合就成为一个直接有效的手段。
不过值得注意的是,美国和欧洲直接模拟芯片企业的这种“内部消化”,正在进一步拉大欧美和亚洲之间在模拟芯片产业上的优势差距。
三巨头的守旧与拓新
为什么三巨头想要突破增长瓶颈,就必须依靠巨额收购来实现呢?
这实际上要跟模拟芯片产业的特点有关。与数字芯片要求快速更新迭代(摩尔定律)不同,模拟芯片产品使用周期较长,价格相对较低,其使用时间通常在10年以上,产品价格也较低。寻求高可靠性与低失真低功耗,核心在于电路设计,模拟芯片设计工艺特别依赖人工经验积累、研发周期长。
一旦某家企业在某类模拟芯片上建立其研发优势,那么其他竞争对手就很难在短时间内模仿或者超过,同时也因为下游客户对模拟芯片超高稳定性要求,一旦某些厂商建立其产品优势,其他竞争者也难以撼动其供应市场。所以,模拟芯片的产品与行业特点导致模拟芯片厂商存在寡头竞争特点。
德州仪器、亚德诺、意法半导体、英飞凌、恩智浦都是长期稳居全球TOP10的模拟芯片巨头,并且近几年,集中度还在进一步上升。近日,亚德诺高价完成美信的收购,甚至于有机会挑战第一名德州仪器的位置,而英飞凌对赛普拉斯的收购,也能让其排名大幅上升。
从产品线来看,三巨头都是老牌的IDM制造商,都拥有非常齐全的产品线,并且更加注重产品线工艺的稳步改进。
当然,恩智浦也想过拓展其他业务。2007年,恩智浦曾收购SiliconLabs蜂窝通信业务,发力移动业务市场,以及数字电视、机顶盒等家庭应用半导体市场,但短暂的出圈尝试不够成功。
因此,2007年起恩智浦很快将无线电话SoC业务、无线业务和家庭业务部门予以出售或剥离,并重新集中到飞利浦时代就确立的优势领域—— 汽车 电子和安全识别业务。2009年,恩智浦开始主要发力HPMS(高性能混合信号)产品,到2019年,包括 汽车 电子、安全识别相关业务的HPMS部门的营收占比超过了95%,产品线大幅度集中。
另外,恩智浦一直在大力推广以UWB、NFC等为代表的射频芯片业务。去年收购Marvell的无线连接业务正是致力于这一方向的表现。
英飞凌更重视其王牌业务板块——功率半导体产品。2016年,英飞凌尝试收购从美国Cree手中收购其Wolfspeed Power &RF部门(不过被美国CFIUS否决),其目的也是为了集中资源,加强其功率半导体业务。英飞凌拥有 汽车 电子、工业功率控制、电源管理及多元化市场、智能卡与安全等四大事业部。
(意法半导体2017Q2~2018Q2三大业务线营收及营业利润率)
相对于英飞凌和恩智浦,意法半导体在传感器业务上更加突出,特别是其MEMS技术,竞争力很强,也正是依托该优势技术,使得该公司在消费类电子、 汽车 ,以及工业传感器应用方面都有较强的竞争力。另外,意外半导体在 汽车 和分立器件、模拟器件以及微控制器和数字IC产品都有相当比例的市场表现。
早在十年以前,欧洲半导体产业就做出了自己的选择,那就是不在移动终端及PC市场寻求突破,而是专注于车用半导体和工业半导体两个细分市场。这一选择既有延续传统优势的考虑,又有对电动 汽车 及物联网这些新兴市场趋势的判断。
欧洲国家本身有良好的 汽车 工业和制造业基础,而欧洲半导体三巨头又在车用和工业半导体领域深耕多年,具备完整的设计、制造和封测的IDM体系,使得竞争对手短期内难以超越,这也是三巨头能够“守旧”的底气。
随着PC市场和移动终端市场红利期的结束,紧随5G网络普及而来的正是万物互联的物联网时代,智能电动 汽车 、无人驾驶、车联网、物联网等全新红利市场的到来,让欧洲半导体产业迎来新一轮增长周期。这是三巨头能够“拓新”的机遇。
从“守旧”中“拓新”,正是欧洲半导体产业能够继续赢得未来市场的不二法门。
三巨头的“中国红利”
由于欧洲半导体产业一直以来,无论是排名还是营收,其相对于美国和亚洲厂商来说,波动都非常小,但是未来又有一个稳定的增长预期。因此即便是三巨头如此大的体量,也成为美国半导体巨头试图并购的目标。
(虚线为2016年高通收购恩智浦流产后去除的390亿美元)
2016年,美国高通尝试以380亿美元收购恩智浦,成为当年金额最高的收购计划。当时恩智浦表示出浓厚的兴趣,但大幅提高了报价至440亿美元。高通同意了这一价格,并且收购案先后获得了美国、欧盟、韩国、日本、俄罗斯等全球八个主要监管部门同意。但在中国监管部门的反垄断审核期内,高通在其收购期内宣布放弃这些收购计划,并为此向恩智浦支付了20亿美元的“分手费”。
高通大力收购恩智浦的原因不难理解,那就是在5G发展可能受阻的情况下,获得恩智浦在 汽车 、物联网、网络融合、安全系统等领域的半导体技术优势,从而实现业务的互补和企业规模的飞跃。
不过,这场收购案中,有一个关键环节就是中国的反垄断审查。而事实上,无论恩智浦还是高通,中国都是最大的销售市场。假如两家强行完成并购,在未来仍有可能面临着我国的反垄断调查、限制甚至是处罚。
同样,对于恩智浦、英飞凌和意法半导体来说,中国既是三家最主要的销售市场,同时也是三巨头耕耘多年的新红利市场。
比如,恩智浦的众多业务早已在中国扎根。2019年汇顶 科技 以1.65亿美元收购NXP的音频应用解决方案业务(VAS),VAS可广泛应用智能手机、智能穿戴、IoT等领域。更早之前的2015年,建广资产与恩智浦宣布成立合资公司瑞能半导体,随后建广资产又以18亿美元巨资收购恩智浦的RF Power部门,成为中国资本首次对具有全球领先地位的国际资产、团队、技术专利和研发能力进行的并购。
2017年,由中资收购恩智浦标准产品业务而组建的安世半导体,已经在半导体细分市场上,取得二极管和晶体管排名第一, ESD保护器件排名第二,小信号MOSFET排名第二,逻辑器件仅次于德州仪器, 汽车 功率MOSFET仅次于英飞凌的名次。
意法半导体也早已在中国耕耘多年,特别是其STM32系列MCU,在中国有巨大的市场影响力。而英飞凌在与1998年已入华的赛普拉斯的整合之后,将获得更大的中国市场,并且英飞凌本身的功率器件在中国的销售也有巨大的增长空间。
在当下华为遭受美国在半导体方面的阻击之时,华为与英飞凌、意法半导体的合作,对于双方来说,都显得非常重要。
在我们完整地回顾完欧洲半导体产业的前世今生之后,如果用一个字来形容,那就是“稳”。
从欧洲半导体产业初兴之时,在各国政府主导下,几乎所有半导体产业都聚集在各国原本的工业巨头之下,享受产业政策的呵护。即使在世纪之交,半导体产业从体量臃肿的母公司独立出来,也仍然只诞生出三家身世优渥的半导体巨头。
而三巨头在发展过程中,其实又一次经历了从臃肿到精简,不断剥离非核心业务的过程。而此后的并购也主要集中在三家重点发展的产业方向,或者优势互补的产业方向上面。
这一切既源于欧洲大陆的传统工业基础优势的延续,又源于欧美亚洲在半导体产业格局上面的复杂博弈。欧洲半导体产业在利用自身传统产业优势的同时,也其实限制了突破传统桎梏的机会。不会像日韩、台湾地区和中国这样,利用人口红利和后发优势,最早从零开始,建立其各自的半导体特色优势。
这也是《圣经》里说的“当上帝关了这扇门,一定会为你打开另一扇门“的现实意义吧。下一篇,我们继续欧洲半导体的回顾,探寻从荷兰飞利浦诞生的一个制造业的奇迹——荷兰光刻机公司ASML。
还是坐不住了,半导体产业或将迎来变天
之前余承东表示,制裁华为的老美似乎是打开了潘多拉魔盒,一些连锁反应正在上演。国内开始走自研道路,而像台积电、日本的东芝也开始表示要打造属于自己的产业链,因为老美这一 *** 作,触动了别人的敏感神经,也提示着半导体企业:要有自己的核心技术。
或因为制裁华为的原因,也或是因为市场复苏的原因,全球缺芯严重,需求量猛增的超出预料,而这个时候,就是半导体产业迎来变天的时刻,对于国内来说,是个机会。
不仅是华为没有芯片可用,随着市场的复苏,各行各业都开始陆续出现缺芯情况,对于芯片的需求也是超过供应商的预判。
对于为什么出现缺芯这一个问题,有解释说亚洲相关企业对晶圆制造厂的投资不足,也有表示称"全球电子产品因yi情畅销,日本关键半导体工厂火灾,法国工厂接连出现大罢工等,都加剧了全球半导体紧缺状况。"(环球时报信息摘要)。
尤其是5G的到了,各行业对芯片的需求也开始激增,缺芯事情涉及甚广,不仅是手机,还有 汽车 、相机等多个行业。
近期新浪 财经 援引英国《金融时报》最新消息称,老美在禁止其他企业与国内合作的时候,却对美企开了"通道",这样使得欧洲企业遭受巨额的经济损失。
比如有网友提到意法半导体公司于12月初宣布,本来计划是总值超过120亿美元,无奈这个目标只能延期一年,因为今年4季度来自国内客户的订单几乎为零,这对该企业的销售造成了一定的损失。
那么怎么办呢?于是我们看到欧盟17个国家开始对半导体进行投资,预计在未来的2-3年内投资1450亿欧元(折合约11579亿元人民币)的资金用来发展半导体产业,建立起属于自己的产能和技术。
于是不少人说,华为是迎来了希望吗?毕竟市场在,就一定会有出口。但说实话,希望还是不要寄托在别人身上,唯有自己掌握核心 科技 才最靠谱。
近年来尤其是今年,国内半导体发展迅速,不管是国家层面还是科研院都开始出手。比如国家将集成电路列为一级学科,以此来培养人才;更有消息透露,或在2025年前投资超9.5万亿人民币发展半导体产业以应对外部的限制;而中科院更是直接表示将会把光刻机列为任务清单。
看上去国内造芯来的轰轰烈烈, 但也任重道远,毕竟基础弱,底子弱,这路还有很长一段要走。
但好在是全球范围内的产业链都在发生微妙的变化,这对于我们来说是件好事,毕竟危与机是并存!
半导体什么是半导体呢?
顾名思义:导电性能介于导体与绝缘体(insulator)之间的材料,叫做半导体(semiconductor).
物质存在的形式多种多样,固体、液体、气体、等离子体等等。我们通常把导电性和导电导热性差或不好的材料,如金刚石、人工晶体、琥珀、陶瓷等等,称为绝缘体。而把导电、导热都比较好的金属如金、银、铜、铁、锡、铝等称为导体。可以简单的把介于导体和绝缘体之间的材料称为半导体。与金属和绝缘体相比,半导体材料的发现是最晚的,直到20世纪30年代,当材料的提纯技术改进以后,半导体的存在才真正被学术界认可。
半导体的发现实际上可以追溯到很久以前,
1833年,英国巴拉迪最先发现硫化银的电阻随着温度的变化情况不同于一般金属,一般情况下,金属的电阻随温度升高而增加,但巴拉迪发现硫化银材料的电阻是随着温度的上升而降低。这是半导体现象的首次发现。不久,
1839年法国的贝克莱尔发现半导体和电解质接触形成的结,在光照下会产生一个电压,这就是后来人们熟知的光生伏特效应,这是被发现的半导体的第二个特征。
在1874年,德国的布劳恩观察到某些硫化物的电导与所加电场的方向有关,即它的导电有方向性,在它两端加一个正向电压,它是导通的;如果把电压极性反过来,它就不导电,这就是半导体的整流效应,也是半导体所特有的第三种特性。同年,舒斯特又发现了铜与氧化铜的整流效应。
1873年,英国的史密斯发现硒晶体材料在光照下电导增加的光电导效应,这是半导体又一个特有的性质。
半导体的这四个效应,(jianxia霍尔效应的余绩——四个伴生效应的发现)虽在1880年以前就先后被发现了,但半导体这个名词大概到1911年才被考尼白格和维斯首次使用。而总结出半导体的这四个特性一直到1947年12月才由贝尔实验室完成。很多人会疑问,为什么半导体被认可需要这么多年呢?主要原因是当时的材料不纯。没有好的材料,很多与材料相关的问题就难以说清楚。
半导体于室温时电导率约在10ˉ10~10000/Ω·cm之间,纯净的半导体温度升高时电导率按指数上升。半导体材料有很多种,按化学成分可分为元素半导体和化合物半导体两大类。锗和硅是最常用的元素半导体;化合物半导体包括Ⅲ-Ⅴ 族化合物(砷化镓、磷化镓等)、Ⅱ-Ⅵ族化合物( 硫化镉、硫化锌等)、氧化物(锰、铬、铁、铜的氧化物),以及由Ⅲ-Ⅴ族化合物和Ⅱ-Ⅵ族化合物组成的固溶体(镓铝砷、镓砷磷等)。除上述晶态半导体外,还有非晶态的有机物半导体等。
本征半导体(intrinsic semiconductor) 没有掺杂且无晶格缺陷的纯净半导体称为本征半导体。在绝对零度温度下,半导体的价带(valence band)是满带(见能带理论),受到光电注入或热激发后,价带中的部分电子会越过禁带(forbidden band/band gap)进入能量较高的空带,空带中存在电子后成为导带(conduction band),价带中缺少一个电子后形成一个带正电的空位,称为空穴(hole),导带中的电子和价带中的空穴合称为电子 - 空穴对。上述产生的电子和空穴均能自由移动,成为自由载流子(free carrier),它们在外电场作用下产生定向运动而形成宏观电流,分别称为电子导电和空穴导电。这种由于电子-空穴对的产生而形成的混合型导电称为本征导电。导带中的电子会落入空穴,使电子-空穴对消失,称为复合(recombination)。复合时产生的能量以电磁辐射(发射光子photon)或晶格热振动(发射声子phonon)的形式释放。在一定温度下,电子 - 空穴对的产生和复合同时存在并达到动态平衡,此时本征半导体具有一定的载流子浓度,从而具有一定的电导率。加热或光照会使半导体发生热激发或光激发,从而产生更多的电子 - 空穴对,这时载流子浓度增加,电导率增加。半导体热敏电阻和光敏电阻等半导体器件就是根据此原理制成的。常温下本征半导体的电导率较小,载流子浓度对温度变化敏感,所以很难对半导体特性进行控制,因此实际应用不多。
杂质半导体(extrinsic semiconductor) 半导体中的杂质对电导率的影响非常大,本征半导体经过掺杂就形成杂质半导体,一般可分为n型半导体和p型半导体。半导体中掺入微量杂质时,杂质原子附近的周期势场受到干扰并形成附加的束缚状态,在禁带中产生附加的杂质能级。能提供电子载流子的杂质称为施主(donor)杂质,相应能级称为施主能级,位于禁带上方靠近导带底附近。例如四价元素锗或硅晶体中掺入五价元素磷、砷、锑等杂质原子时,杂质原子作为晶格的一分子,其五个价电子中有四个与周围的锗(或硅)原子形成共价键,多余的一个电子被束缚于杂质原子附近,产生类氢浅能级-施主能级。施主能级上的电子跃迁到导带所需能量比从价带激发到导带所需能量小得多,很易激发到导带成为电子载流子,因此对于掺入施主杂质的半导体,导电载流子主要是被激发到导带中的电子,属电子导电型,称为n型半导体。由于半导体中总是存在本征激发的电子空穴对,所以在n型半导体中电子是多数载流子,空穴是少数载流子。相应地,能提供空穴载流子的杂质称为受主(acceptor)杂质,相应能级称为受主能级,位于禁带下方靠近价带顶附近。例如在锗或硅晶体中掺入微量三价元素硼、铝、镓等杂质原子时,杂质原子与周围四个锗(或硅)原子形成共价结合时尚缺少一个电子,因而存在一个空位,与此空位相应的能量状态就是受主能级。由于受主能级靠近价带顶,价带中的电子很容易激发到受主能级上填补这个空位,使受主杂质原子成为负电中心。同时价带中由于电离出一个电子而留下一个空位,形成自由的空穴载流子,这一过程所需电离能比本征半导体情形下产生电子空穴对要小得多。因此这时空穴是多数载流子,杂质半导体主要靠空穴导电,即空穴导电型,称为p型半导体。在p型半导体中空穴是多数载流子,电子是少数载流子。在半导体器件的各种效应中,少数载流子常扮演重要角色。
编辑词条
开放分类:
技术、电子、半导体物理
参考资料:
1.Introduction to Solid State Physics - by Charles Kittle
半导体应用:
硅是集成电路产业的基础,半导体材料中98%是硅,半导体硅工业产品包括多晶硅、单晶硅(直拉和区熔)、外延片和非晶硅等,其中,直拉硅单晶广泛应用于集成电路和中小功率器件。区域熔单晶目前主要用于大功率半导体器件,比如整流二极管,硅可控整流器,大功率晶体管等。单晶硅和多晶硅应用最广。
中彰国际(SINOSI)是一家致力于尖端科技、开拓创新的公司。中彰国际(SINOSI)能够规模生产和大批量供应单晶硅、多晶硅及Φ4〃- Φ6〃直拉抛光片、 Φ3〃- Φ6〃直拉磨片和区熔NTD磨片并且可以按照国内、外客户的要求提供非标产品。
单晶硅
单晶硅主要有直拉和区熔
区熔(NTD)单晶硅可生产直径范围为:Φ1.5〃- Φ4〃。直拉单晶硅可生产直径范围为:Φ2〃-Φ8〃。
各项参数可按客户要求生产。
多晶硅
区熔用多晶硅:可生产直径Φ40mm-Φ70mm。直径公差(Tolerance)≤10%,施主水平>300Ω.㎝,受主水平>3000Ω.㎝,碳含量<2×1016at/㎝3 。各项参数可按客户要求生产。
切磨片
切磨片可生产直径范围为:Φ1.5〃- Φ6〃。厚度公差、总厚度公差、翘曲度、电阻率等参数符合并优于国家现行标准,并可按客户要求生产。
抛光片
抛光片可生产直径范围为:Φ2〃- Φ6〃,厚度公差、总厚度公差、翘曲度、平整度、电阻率等参数符合并优于国家现行标准,并可按客户要求生产。
高纯的单晶硅棒是单晶硅太阳电池的原料,硅纯度要求99.999%。单晶硅太阳电池是当前开发得最快的一种太阳电池,它的构和生产工艺已定型,产品已广泛用于空间和地面。为了降低生产成本,现在地面应用的太阳电池等采用太阳能级的单晶硅棒,材料性能指标有所放宽。有的也可使用半导体器件加工的头尾料和废次单晶硅材料,经过复拉制成太阳电池专用的单晶硅棒。
单晶硅是转化太阳能、电能的主要材料。在日常生活里,单晶硅可以说无处不在,电视、电脑、冰箱、电话、汽车等等,处处离不开单晶硅材料;在高科技领域,航天飞机、宇宙飞船、人造卫星的制造,单晶硅同样是必不可少的原材料。
在科学技术飞速发展的今天,利用单晶硅所生产的太阳能电池可以直接把太阳能转化为光能,实现了迈向绿色能源革命的开始。现在,国外的太阳能光伏电站已经到了理论成熟阶段,正在向实际应用阶段过渡,太阳能单晶硅的利用将普及到全世界范围,市场需求量不言而喻。
直拉硅单晶广泛应用于集成电路和中小功率器件。区域熔单晶目前主要用于大功率半导体器件,比如整流二极管,硅可控整流器,大功率晶体管等。
区熔(NTD)单晶硅可生产直径范围为:Φ1.5〃- Φ4〃。
直拉单晶硅可生产直径范围为:Φ2〃-Φ8〃。
硅单晶被称为现代信息社会的基石。硅单晶按照制备工艺的不同可分为直拉(CZ)单晶硅和区熔(FZ)单晶硅,直拉单晶硅被广泛应用于微电子领域,微电子技术的飞速发展,使人类社会进入了信息化时代,被称为硅片引起的第一次革命。区熔单晶硅是利用悬浮区熔技术制备的单晶硅。它的用途主要包括以下几个方面。
1、制作电力电子器件
电力电子技术是实现电力管理,提高电功效率的关键技术。飞速发展的电力电子被称为“硅片引起的第二次革命”,大多数电力电子器件是用区熔单晶硅制作的。电力电子器件包括普通晶闸管(SCR)、电力晶体管GTR、GTO以及第三代新型电力电子器件——功率场效应晶体管(MOSFET)和绝缘栅双极晶体管(IGBT)以及功率集成电路(PIC)等,广泛应用于高压直流输电、静止无功补偿、电力机车牵引、交直流电力传动、电解、励磁、电加热、高性能交直流电源等电力系统和电气工程中。制作电力电子器件,是区熔单晶硅的传统市场,也是本项目产品的市场基础。
2、制作高效率太阳能光伏电池
太阳能目前已经成为最受关注的绿色能源产业。美国、欧洲、日本都制定了大力促进本国太阳能产业发展的政策,我国也于2005年3月份通过了《可再生能源法》。这些措施极大地促进了太阳能电池产业的发展。据统计,从1998—2004年,国际太阳能光伏电池的市场一直保持高速增长的态势,年平均增长速度达到30%,预计到2010年,仍将保持至少25%的增长速度。
晶体硅是目前应用最成熟,最广泛的太阳能电池材料,占光伏产业的85%以上。美国SunPower公司最近开发出利用区熔硅制作太阳能电池技术,其产业化规模光电转换效率达到20%,为目前产业化最高水平,其综合性价比超过直拉单晶硅太阳能电池(光电转换效率为15%)和多晶硅太阳能电池(光电转换效率为12%)。这项新技术将会极大地扩展区熔硅单晶的市场空间。据估计,到2010年,其总的市场规模到将达到电力电子需求规模,这是本项目新的市场机会。
3、制作射频器件和微电子机械系统(MEMS)
区熔单晶还可以用来制作部分分立器件。另外采用高阻区熔硅制造微波单片集成电路(MMIC)以及微电子机械系统(MEMS)等高端微电子器件,被广泛应用于微波通讯、雷达、导航、测控、医学等领域,显示出巨大的应用前景。这也是区熔单晶的又一个新兴的市场机会。
4、制作各种探测器、传感器,远红外窗口
探测器、传感器是工业自动化的关键元器件,被广泛应用于光探测、光纤通讯、工业自动化控制系统中以及医疗、军事、电讯、工业自动化等领域。高纯的区熔硅单晶是制作各种探测器、传感器的关键原材料,其市场增长趋势也很明显。
图片参考:
http://www.sinosi.com/chinese/Products%20Gallcry/Semi-Silica/Semi-Conductor%20Silicon.htm
http://www.istis.sh.cn/list/list.asp?id=2214
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)