半导体主要具有三大特性:
1.热敏特性
半导体的电阻率随温度变化会发生明显地改变。例如纯锗,湿度每升高10度,它的电阻率就要减小到原来的1/2。温度的细微变化,能从半导体电阻率的明显变化上反映出来。利用半导体的热敏特性,可以制作感温元件——热敏电阻,用于温度测量和控制系统中。
值得注意的是,各种半导体器件都因存在着热敏特性,在环境温度变化时影响其工作的稳定性。
2.光敏特性
半导体的电阻率对光的变化十分敏感。有光照时、电阻率很小;无光照时,电阻率很大。例如,常用的硫化镉光敏电阻,在没有光照时,电阻高达几十兆欧姆,受到光照时。电阻一下子降到几十千欧姆,电阻值改变了上千倍。利用半导体的光敏特性,制作出多种类型的光电器件,如光电二极管、光电三极管及硅光电池等。广泛应用在自动控制和无线电技术中。
3.掺杂特性
在纯净的半导体中,掺人极微量的杂质元素,就会使它的电阻率发生极大的变化。例如。在纯硅中掺人。百万分之—的硼元素,其电阻率就会从214000Ω·cm一下于减小到0.4Ω·cm,也就是硅的导电能为提高了50多万倍。人们正是通过掺入某些特定的杂质元素,人为地精确地控制半导体的导电能力,制造成不同类型的半导体器件。可以毫不夸张地说,几乎所有的半导体器件,都是用掺有特定杂质的半导体材料制成的。
扩展资料
1、半导体的组成部分
半导体的主要由硅(Si)或锗(Ge)等材料制成,半导体的导电性能是由其原子结构决定的。
2、半导体分类
(1)半导体材料很多,按化学成分可分为元素半导体和化合物半导体两大类。
锗和硅是最常用的元素半导体;化合物半导体包括第Ⅲ和第Ⅴ族化合物(砷化镓、磷化镓等)、第Ⅱ和第Ⅵ族化合物( 硫化镉、硫化锌等)、氧化物(锰、铬、铁、铜的氧化物),以及由Ⅲ-Ⅴ族化合物和Ⅱ-Ⅵ族化合物组成的固溶体(镓铝砷、镓砷磷等)。除上述晶态半导体外,还有非晶态的玻璃半导体、有机半导体等。
(2)按照其制造技术可以分为:集成电路器件,分立器件、光电半导体、逻辑IC、模拟IC、储存器等大类,一般来说这些还会被分成小类。
此外还有以应用领域、设计方法等进行分类,虽然不常用,但还是按照IC、LSI、VLSI(超大LSI)及其规模进行分类的方法。此外,还有按照其所处理的信号,可以分成模拟、数字、模拟数字混成及功能进行分类的方法。
3、半导体的作用与价值
目前广泛应用的半导体材料有锗、硅、硒、砷化镓、磷化镓、锑化铟等。其中以锗、硅材料的生产技术较成熟,用的也较多。
用半导体材料制成的部件、集成电路等是电子工业的重要基础产品,在电子技术的各个方面已大量使用。半导体材料、器件、集成电路的生产和科研已成为电子工业的重要组成部分。在新产品研制及新技术发展方面,比较重要的领域有:
(1)集成电路 它是半导体技术发展中最活跃的一个领域,已发展到大规模集成的阶段。在几平方毫米的硅片上能制作几万只晶体管,可在一片硅片上制成一台微信息处理器,或完成其它较复杂的电路功能。集成电路的发展方向是实现更高的集成度和微功耗,并使信息处理速度达到微微秒级。
(2)微波器件 半导体微波器件包括接收、控制和发射器件等。毫米波段以下的接收器件已广泛使用。在厘米波段,发射器件的功率已达到数瓦,人们正在通过研制新器件、发展新技术来获得更大的输出功率。
(3)光电子器件 半导体发光、摄象器件和激光器件的发展使光电子器件成为一个重要的领域。它们的应用范围主要是:光通信、数码显示、图象接收、光集成等。
半导体采用的元素材料一般为外层电子数为4的元素(如硅和锗),这些元素的原子的导电性不稳定,外层电子很容易离开原子核的引力范围,成为自由电子,同时在原子内部留下呈现正电性的原子结构。如果在硅基体中掺入少量的价电子数为3的元素(如硼),当硼和硅形成共价键的时候,因为硼的外层电子不足以完全填补硅原子的空轨道,必然要吸收一个多余的自由电子来成键,于是在半导体内部形成一个“空壳”,这个空壳呈现出正电性。硅和硼的这种混合物被称为P型半导体(Positive Semiconduct)。
如果硅基体中掺入少量的价电子数为5的元素(如磷),当磷和硅形成共价键的时候,因为磷的外层电子在完全填补硅原子的空轨道还有富余,必然会脱离原子核成为自由电子,于是在半导体内部呈现出负电性。硅和磷的这种混合物被称为N型半导体(Negative Semiconduct)。
P型和N型半导体是二极管和三极管制作的基础。
砷作为外层电子数为5的元素,它和锗的组合将会产生N型半导体。但是考虑到原料成本因素,通常半导体工业都会选择磷而非砷作为N型半导体的制作原料。
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)