南京大学团队在二维半导体领域取得关键突破

南京大学团队在二维半导体领域取得关键突破,第1张

经过近十年的发展,二维电子学已经取得了巨大进步,但在大面积单晶制备、关键器件工艺、与主流半导体技术兼容性等方面仍存在挑战。

南京大学电子科学与工程学院王欣然教授课题组聚焦上述问题,研究突破二维半导体单晶制备和异质集成关键技术,为后摩尔时代集成电路的发展提供了新思路。相关研究成果近期连续发表在Nature Nanotechnology上。

半导体单晶材料是微电子产业的基石。与主流的12寸单晶硅晶圆相比,二维半导体的制备仍停留在小尺寸和多晶阶段,开发大面积、高质量的单晶薄膜,是迈向二维集成电路的第一步。然而,二维材料的生长过程中,数以百万计的微观晶粒随机生成,只有控制所有晶粒保持严格一致的排列方向,才有可能获得整体的单晶材料。

蓝宝石是半导体工业界广泛使用的一种衬底,在规模化生产、低成本和工艺兼容性方面具有突出的优势。合作团队提出了一种方案,通过改变蓝宝石表面原子台阶的方向,人工构筑了原子尺度的“梯田”。

利用“原子梯田”的定向诱导成核机制,实现了TMDC的定向生长。基于此原理,团队在国际上首次实现了2英寸MoS2单晶薄膜的外延生长。

得益于材料质量的提升,基于MoS2单晶制备的场效应晶体管迁移率高达102.6 cm2/Vs,电流密度达到450 μA/μm,是国际上报道的最高综合性能之一。同时,该技术具有良好的普适性,适用于MoSe2等其他材料的单晶制备,该工作为TMDC在集成电路领域的应用奠定了材料基础。

大面积单晶材料的突破使得二维半导体走向应用成为可能。在第二个工作中,电子学院合作团队基于第三代半导体研究的多年积累,结合最新的二维半导体单晶方案,提出了基于MoS2 薄膜晶体管驱动电路、单片集成的超高分辨Micro-LED显示技术方案。

Micro-LED是指以微米量级LED为发光像素单元,将其与驱动模块组装形成高密度显示阵列的技术。与当前主流的LCD、OLED等显示技术相比,Micro-LED在亮度、分辨率、能耗、使用寿命、响应速度和热稳定性等方面具有跨代优势,是国际公认的下一代显示技术。然而,Micro-LED的产业化目前仍面临诸多挑战。

首先,小尺寸下高密度显示单元的驱动需求难以匹配。其次,产业界流行的巨量转移技术在成本和良率上难以满足高分辨率显示技术的发展需求。特别对于AR/VR等超高分辨应用,不仅要求分辨率超过3000PPI,而且还需要显示像元有更快的响应频率。

合作团队瞄准高分辨率微显示领域,提出了MoS2 薄膜晶体管驱动电路与GaN基Micro-LED显示芯片的3D单片集成的技术方案。团队开发了非“巨量转移”的低温单片异质集成技术,采用近乎无损伤的大尺寸二维半导体TFT制造工艺,实现了1270 PPI的高亮度、高分辨率微显示器,可以满足未来微显示、车载显示、可见光通讯等跨领域应用。

其中,相较于传统二维半导体器件工艺,团队研发的新型工艺将薄膜晶体管性能提升超过200%,差异度降低67%,最大驱动电流超过200 μA/μm,优于IGZO、LTPS等商用材料,展示出二维半导体材料在显示驱动产业方面的巨大应用潜力。

该工作在国际上首次将高性能二维半导体TFT与Micro-LED两个新兴技术融合,为未来Micro-LED显示技术发展提供了全新技术路线。

上述工作分别以 “Epitaxial growth of wafer-scale molybdenum disulfide semiconductor single crystals on sapphire” (通讯作者为王欣然教授和东南大学王金兰教授)和 “Three dimensional monolithic micro-LED display driven by atomically-thin transistor matrix” (通讯作者为王欣然教授、刘斌教授、施毅教授和厦门大学张荣教授)为题, 近期在线发表于Nature Nanotechnology。

屈原在他的代表作十万个为什么《天问》中问道:交错而生的阴阳宇宙,其本源与演化究竟如何?都说天有九重,又有谁去度量?(“阴阳三合,何本何化?圜则九重,孰营度之?”)。

大约2300年后,名为“天问”的中国行星探测任务启动。“天问一号”火星探测器飞向苍茫宇宙,将于明年二月抵达火星。火星当然不是终点,但是在迈向更远星空的旅途上,比如——太阳。

一、踩上风口,关于材料的美好前景

宇宙中有许多太阳(恒星),离它们越近温度就越高,辐射就越强,远远超出一二代半导体的承受极限,所以目前探测器去不了离太阳们太近的地方。因为探测器也需要芯片,因此对于半导体基础材料的要求更高。

于是, 耐高温、耐高频、抗辐射 适应大功率 的第三代半导体闪亮登场了。

半导体一二三代主要以材料区分:

【第一代】:主要用硅和锗,是目前绝大部分器件的原料;

【第二代】:砷化镓和磷化镓成为4G通讯设备的主流;

【第三代】:以氮化镓、碳化硅、氧化锌和金刚石等为代表,尤其是碳化硅和氮化镓各擅胜场。其中 碳化硅 耐高温耐高压,主要用于千伏级别如电动车、高铁或工业用途。 氮化镓 主要用于中压(约600伏)产品。虽然与硅材料有部分重叠,但良好的移动性特别适合高频率场景,所以在 基站 5G通讯 等场景占优。

半导体性能越来越强,对材料的要求自然水涨船高。为了能生产第三代半导体材料,上世纪60年代末,一种把 金属有机化合物 气化,在高温反应室里发生化学反应得到相应材料的技术—— MOCVD ,成为了主流技术。用于这种技术的金属有机化合物统称 MO源 。全世界MO源供应商有4家玩儿得最大,对岸3家我国1家。中国这家就是南大光电(300346)。其主要产品纯度都做到了6N(99.9999%)级,而且与许多用户有深度合作,竞争态势不错。

摘自《南大光电2020年半年报》

中国拥有世界上已探明镓储量的绝大部分,公司未来很可能成为全球 三甲 基镓 龙头。三甲基镓是制备氮化镓的必需原料,所以三代半导体这个风口,南大光电算是踩中了。

另一方面,由于三代半导体还处于起步阶段,公司的MO源目前主要用于LED行业。LED这些年竞争不断加剧,所以公司MO源产品的 毛利率有所下滑 ,但整体上还是不错的。

摘自《南大光电2020年半年报》

不过公司特气产品 毛利下滑 十分严重,这是另一个故事了……

二、有钱任性,关于收购的悲伤故事

在MOCVD技术中,MO源进入反应室需要与高纯超净特种气体,也就是 高纯电子特气 混合。这种气体不但重要,纯度和洁净度直接影响加工精度,而且用量很大,是用量仅次于硅片的半导体材料。公司的磷烷、砷烷气体纯净度都做到了6N级别,是国内LED行业主要的气体供应商,在电子行业也有进展,硅烷、硼烷已经准备投放市场。特气比MO源的利润丰厚很多,去年上半年公司 特气产品毛利率高达60.76% ,简直高得不像制造业!

明星业务急转直下,源自一场有钱任性的并购。

去年8月5日,公司公告拟出资2.5亿收购山东飞源气体57.97%的股权, 溢价率高达235%

摘自《南大光电取得飞源气体57.97%股权的公告》

这个收购案的诡异之处在于飞源气体2019年7月才由山东飞源 科技 有限公司通过分立方式设立,其提交的财务文件中2017和2018年 财务报告均是模拟数据 ,两年分别亏损0.3亿和0.2亿,2019年前7个月又亏损近千万。可以说,南大是高溢价收购了别人还没做起来的业务自己做。

公告一出,深交所发了《关注函》,连发九问要求公司说明收购的合理性。公司答得头头是道,最终于去年11月底完成了收购。

任性收购的恶果从去年底开始显现。公司各项费用飙升,利润大幅下滑,直到今年上半年仍没有改善的迹象。公司扣除非经常损益的 净利润骤减87.74% 经营现金流萎缩260.60% ,由正转负。橙哥估计,买来的这部分业务还亏着呢。

摘自《南大光电2020年半年报》

这里面要说一下的是研发费用。根据半年报,上半年公司研发投入增长40%,如果属实的话那说明公司 大部分研发投入已经符合资本化条件 ,所以计入费用的部分不增反减,这也符合公司不断有新产品进入市场的现状。

但是飙升数倍的销售费用和管理费用告诉我们,公司的销售并不顺畅,对收购资产的整合也远没有完成。

三、结语

上半年,南大光电193nm高端光刻胶项目(可用于90-14nm技术节点集成电路制造)顺利投产并开始进行客户验证。公司另一高端材料ALD前驱体也具备量产能力并实现小规模销售。近日,公司公告收购杜邦公司19项新型硅前驱体技术资产包,继续增厚技术储备。综合来看,南大光电基础不错,核心产品有积淀,新业务发展也不错。但是一次任性的收购无异于给自己买了一个大包袱,何时卸下这副重担,年报或许有答案。

注:本文不构成投资建议,股市有风险,投资需谨慎,没有买卖就没有伤害。


欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/dianzi/9133482.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-04-25
下一篇 2023-04-25

发表评论

登录后才能评论

评论列表(0条)

保存