硅片尺寸(8英寸、12英寸)上加工纳米级的电路,就能容纳更多晶体管,做出体积更小更复杂的电路。
把纳米技术定位为微加工技术的极限。也就是通过纳米精度的“加工”来人工形成纳米大小的结构的技术。这种纳米级的加工技术,也使半导体微型化即将达到极限。现有技术即便发展下去,从理论上讲终将会达到限度。这是因为,如果把电路的线幅变小,将使构成电路的绝缘膜的为得极薄,这样将破坏绝缘效果。
纳米技术有很多种,基本上可以分成两类,一类是由下而上的方式或称为自组装的方式,另一类是由上而下所谓的微缩方式。前者以各种材料、化工等技术为主,后者则以半导体技术为主。
以前我们都称 IC 技术是「微电子」技术,那是因为晶体管的大小是在微米(10-6米)等级。但是半导体技术发展得非常快,每隔两年就会进步一个世代,尺寸会缩小成原来的一半,这就是有名的摩尔定律(Moore’s Law)。
大约在 15 年前,半导体开始进入次微米,即小于微米的时代,尔后更有深次微米,比微米小很多的时代。到了 2001 年,晶体管尺寸甚至已经小于 0.1 微米,也就是小于 100 纳米。因此是纳米电子时代,未来的 IC 大部分会由纳米技术做成。但是为了达到纳米的要求,半导体制程的改变须从基本步骤做起。每进步一个世代,制程步骤的要求都会变得更严格、更复杂。
手性纳米光子界面Chiral nanophotonic interfaces,能够实现导向光学模式和圆形二向色材料之间传播方向相关的相互作用。界面手性的电调谐,将有助于片上光电和光子电路主动、可切换非互易性,但仍然极具挑战。
近日,美国 芝加哥大学 Alexander A. High团队在Nature Photonics上发文,报道了在原子薄单层二硒化钨tungsten diselenide(WSe2)纳米光子界面中的电可控手性。二氧化钛波导直接制作在低无序氮化硼封装的WSe2表面上。在积分之后,从激子态到波导中的光致发光,可以在平衡发射和定向偏置发射之间电切换。工作原理利用了WSe2中激子态掺杂相关的谷极化。此外,纳米光子波导,可以用作扩散激子通量的近场源,其显示从界面手性继承的谷和自旋极化。这种多功能制造方法,使光子学与范德瓦尔斯异质结构的确定性集成成为可能,并可提供对其激子和电荷载流子行为的光学控制。
Electrically controllable chirality in a nanophotonic interface with a two-dimensional semiconductor
二维半导体的纳米光子界面中的电控手性。
图2:界面静电调谐。
图3:谷极化的栅极依赖性。
图4:谷(自旋)极化激子通量的光子泵浦。
该项研究演示了与六方氮化硼hexagonal boron nitride,hBN封装的、电门控WSe2单层连接的光子波导。界面表现出从0%到20%电可调手性-定向耦合效率chiral–directional coupling efficiency,CDCE,并通过近场激发产生谷(自旋)极化激子通量。
除了线性波导,多功能纳米光子制造方法,可以将过渡金属硫化物TMDCs与更复杂的光子结构连接,其中器件几何形状和尺寸仅,受先进光刻技术限制,使光子环调制器和干涉仪,以及光子晶体中的激子-极化激元成为可能。
结合二维材料大面积生长、剥离和组装的最新进展,这将提高异质结构产量和可扩展性,超越目前限制,这项工作,为其与纳米光子电路的确定性、晶圆级集成,建立了一个通用平台。
重要的是,该界面的可调手性(以前在其他手性光学界面中无法获得)依赖于过渡金属硫化物TMDC单层中激子态掺杂相关的谷动力学。多层和扭曲的范德瓦尔斯异质结构,展示了设计的、奇异的谷特性,也可以与这种波导界面相结合,用于额外手性功能,如栅极可逆发射路由,并提供基于二维材料的新光子逻辑和控制方案。
此外,原子薄半导体中,激子扩散的纳米光子驱动,在分布式光子元件和局部激子电路之间建立了一座桥梁。此外,通过手性过渡金属硫化物TMDC–光子界面的近场光泵浦,可用于产生单层中驻留电荷载流子的自旋极化。这种光学制备的自旋极化电子态,对载流子掺杂水平敏感,可以打破界面时间反演对称性,实现集成纳米光子结构中的栅极激活全光非互易性。
文献链接:https://www.nature.com/articles/s41566-022-00971-7
DOI: https://doi.org/10.1038/s41566-022-00971-7
本文译自Nature。
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)