40年代首次提出固体中杂质缺陷导致 X光漫散射的理论(被誉为黄散射),证明了无辐射跃迁绝热近似和静态耦合理论的等价性,澄清了这方面的一些根本性问题。
他和学生详细分析了Ⅲ-Ⅴ族化合物的量子阱和超晶格的空穴带的电子状态,发展了一种适用于超晶格结构的简单有效的计算方法,从而对量子阱和超晶格结构中空穴子带的性质、价带杂化和外加电场等对量子阱和超晶格中激子吸收的影响做了理论计算。他和学生系统研究了超晶格中的长波光学振动模式,指出流行的连续介电模型的结果是不对的,基于他在1951年提出的偶极振子晶格模型,他们提出了一个能描述迄今了解的实验事实的理论模型,得到了在一维和二维的量子系统中纵向光学振动和横向光学振动的类体模的正确描述。他们的这项工作对理解半导体超晶格的光学性质、光散射效应、电子和格波的相互作用起到了重要作用。黄昆与朱邦芬提出的超晶格光学声子模式,被称为“黄—朱模型”。
黄昆受到爱丁堡大学玻恩教授(M.Born)的赏识,被邀合著《晶格动力学》一书。这本专著至今仍是固体物理学领域的权威著作,从1975年至2001年3月,该书的英文版被引用5254次,俄文版被引用376次,平均每年200多次。
除了撰写《晶格动力学》,这段时间黄昆还连续完成了两项开拓性的学术贡献。一项是提出著名的“黄方程”和“声子极化激元”概念,另一项是与后来成为他妻子的里斯(A.Rhys,中文名李爱扶)共同提出的“黄-里斯理论”。他与妻子在1950年合写的这篇论文,至今仍是在这个领域工作的科学家们必引的经典文献。前不久检索发现,从1975年以来,这篇文章被他人在SCI刊物引用734次,其中1994年以后被引用240次,平均每年20多次。 1956年暑期,北京大学、复旦大学、南京大学、厦门大学和吉林大学五校,在北京大学联合开办中国第一个半导体专业,黄昆任主任、谢希德为副主任。在黄昆、谢希德领导下,五校师生团结协作,先后开设了固体物理、半导体物理、半导体实验、半导体材料、晶体管电路、半导体器件等全面的半导体专业课程,并于1957年和1958年培养出200多名首批半导体专业毕业生。这些学生成为中国新兴半导体事业的第一批骨干,对中国从无到建立和发展半导体科学技术工业体系起了重要作用。随后,全国许多高校纷纷开设了半导体专业,还建立了研究所和生产半导体材料和器件的车间,使中国半导体学科和半导体技术独立自主地发展起来。 学生:秦国刚院士。 甘子钊、秦国刚、夏建白等好几位当选为中国科学院院士。
黄昆把自己的一生科学研究经历归结为:一是要学习知识,二是要创造知识。对做科学研究工作的人来讲,归根结底在于创造知识。而学习知识与创造知识,黄昆从自己的切身经历和观察别人的经验教训,归纳出两句名言:
(1)“学习知识不是越多越好,越深越好,而是要服从于应用,要与自己驾驭知识的能力相匹配。”
(2)“对于创造知识,就是要在科研工作中有所作为,真正做出点有价值的研究成果。为此,要做到三个‘善于’,即要善于发现和提出问题,尤其是要提出在科学上有意义的问题;要善于提出模型或方法去解决问题,因为只提出问题而不去解决问题,所提问题就失去实际意义;还要善于作出最重要、最有意义的结论。”这两句名言确实是黄昆的经验之谈,我们应当作座右铭而牢记。 提出固体中杂质缺陷导致X射线漫散射的理论,被称为“黄散射”,黄昆受到爱丁堡大学玻恩教授(M.Born)的赏识,被邀合著《晶格动力学》一书。这本专著至今仍是固体物理学领域的权威著作,与里斯共同提出了多声子的辐射和无辐射跃迁的量子理论;同期佩卡尔发表了相平行的理论,被国际上称为“黄-佩卡尔理论”或“黄-里斯理论”;提出了晶体中声子与电磁波的耦合振荡模式,当时提出的方程,被称为“黄方程”;研究半导体量子阱超晶格物理。建立超晶格光学振动的理论,发表了后来被国际物理学界称为“黄-朱模型”的理论,多本国外的研究生教材详细介绍了这个理论。
可以去的地方还是很多的。首先光学工程,毕业后可以去做光学仪器的公司,我了解的有光学测量等方面的仪器,超级贵,很多外企都是非常高精尖的,只有硕士才好进。
其次是进半导体行业,现在半导体行业的工资水平在全行业来讲还是相对偏高的。可以进代工厂,设计公司,封装公司,或者跟光学有关的厂商更合适。
最后,需要说的是,大部分人毕业之后都是从事跟自己专业不完全相关的,但是长远来看,你学什么,迟早会用得上。
专业只是给你一个敲门砖,至于有没有前途,主要靠你兴趣专业与所选行业工作的匹配度,更重要的是,靠你的运气。
十年之后就会印证我这句话。
希望你采纳。
一、培养目标1.较好地掌握马克思主义基本理论,树立爱国主义和集体主义思想,遵纪守法,具有较强的事业心和责任感,具有良好的道德品质和学术修养,身心健康。2.在本学科内掌握坚实宽广的基础理论和系统深入的专门知识,具有良好的科学素养和独立从事科学研究工作的能力,在科学或专门技术上做出创造性的成果。3.能熟练地运用一门外国语。二、学科、专业及研究方向简介光学工程是一门历史悠久而又年轻的学科。它的理论基础——光学,作为物理学的主干学科经历了漫长而曲折的发展道路,铸造了几何光学、波动光学、量子光学及非线性光学,揭示了光的产生和传播的规律以及与物质相互作用的关系。随着激光技术和光电子技术的崛起,光学工程已经发展为以光学为主,并与信息科学、能源科学、材料科学、生命科学、空间科学、精密机械与制造、计算机科学及微电子技术等学科紧密交叉和相互渗透的学科。它包含了许多重要的新兴学科分支,如激光技术、光通讯、光存储与记录、光学信息处理、光电显示、全息和三维成像、薄膜和集成光学、光电子和光子技术、激光材料处理和加工、弱光与红外成像技术、光电测量、光纤光学、现代光学和光电子仪器及器件、光学遥感技术以及综合光学工程技术等。这些分支不仅使光学工程产生质上的跃变,而且推动建立了一个规模迅速扩大的现代光学产业和光电子产业。 本专业1998年获得“光学工程”硕士点授予权,2005年获得博士点授予权。本学科专业依托《发光与光信息技术》和《全光网络与现代通讯网》两个教育部重点实验室,在徐叙瑢院士和简水生院士的指导下,形成如下研究方向:1.平板显示技术与器件 平板显示是采用平板显示器件辅以逻辑电路来实现显示的。由于其电压低、重量轻、体积小、显示质量优异,无论在民用领域还是在军用领域都将获得广泛应用。该方向主要从事发光与信息显示前沿科学问题。既包括发光显示材料(有机材料、无机材料及其相关复合等材料),又包括诸多(场发射、等离子体、发光二极管、液晶及电致发光等)显示器件等方面的研究。2.全光信号处理及网络应用技术主要研究光通信网络、光纤传感及生物医学光子学领域的前沿课题——光分组交换全光网的网络技术及支撑光分组交换的全光信号处理技术,如光d性分组环光纤通信网、全光缓存技术、光开关、光逻辑、光信头识别、分布式光纤传感系统、光纤性能在线检测、光纤技术在生物医学光子学中的应用等。3.光电检测技术主要研究先进制造技术、轨道交通等工程领域内各种几何及物理量的光电检测机理、方法、技术与实现途径,并采用各种信息与信号处理方法与技术来获得各种评价参数,最终实现对重要零部件与设备关键参数及缺陷的实时检测与故障诊断,确保其运行安全。4.生物分子光探测技术采用先进光电子学技术,以朊病毒、HIV等重要病毒为模型,开展病毒与细胞的相互作用机制、免疫保护机制研究,开展生物大分子的探测、分子相互作用识别等先进技术研究,发展快速检测技术。开展新型病毒载体、真核表达载体技术的研究。开发新型疫苗和药物。5.光电子材料与器件太阳能电池技术,主要研究先进的晶硅太阳电池工艺,以及单晶硅/非晶硅异质结(HIT)太阳电池技术、非晶硅薄膜太阳电池技术、有机薄膜太阳电池技术、染料敏化太阳电池技术、宽带吸收增强太阳电池技术等。研究稀土发光、半导体发光、白光LED照明、无汞荧光灯、光学薄膜基本设计、光存储、光电探测等材料及光电器件,研究这些材料和器件的新技术和新工艺以及它们的应用。三、培养方式及学习年限1.培养方式博士生的培养方式采取导师负责制,也可实行以导师为主的指导小组制。课程学习和科学研究可以相互交叉,课程学习采用学分制,在申请答辩之前应修满所要求的学分。2.学习年限全日制博士研究生在校学习年限一般为三至五年;硕博连读的研究生一般为四至六年。非全日制博士研究生在校学习年限一般不超过六年。四、课程设置与学分实行学分制,学分最低应修为12学分。课程设置分学位课和非学位课两大类,学位课分公共课、基础课、专业基础课、专业课,非学位课分必修环节和任选课。博士研究生在校期间,应修最低学分为12学分,其中学位课7学分,非学位课5学分。课程学习实行学分制,博士研究生应根据科学研究和学位论文的需要,在导师指导下选择适合的课程学习时间,在博士论文答辩前完成课程学分。欢迎分享,转载请注明来源:内存溢出
评论列表(0条)