半导体和芯片的区别如下:
1、概念不同。芯片是半导体元件产品的统称,将电路小型化的方式。半导体是指常温下导电性能介于导体与绝缘体之间的材料。
2、特点不同。芯片是把电路制造在半导体芯片上的集成电路。集成电路是包括芯片制造技术与设计技术。
3、功能不同。芯片晶体管出现之后,各式的固态半导体组件大量使用取代了取代了真空管在电路中的功能与角色。半导体主要是用在收音机、电视机和测温上。
4、芯片是一种集成电路,是由大量的晶体管构成。各种的芯片都会有不同的规模,大到有几亿晶体管,小的话只有几十晶体管。芯片加电后,会先产生一个启动指令启动芯片,之后就一直接受新指令和数据来完成功能。
用霍尔效应:两端通电,在内部会形成稳定电流,但在半导体的上下表面是没有电位差的;然后在半导体的两个对面的侧,加一个面磁场,这个时候在半导体另两个侧面上会形成电势差(因为内部的载流子在磁场作用下发生了偏转)。
因为N型半导体载流子是电子,故根据电流的方向和两个侧面的电位高低就可以进行判断。
如果条件允许,找一个掺杂已知的半导体,然后把他们粘到一起,组成个整体结,分别测两端电流导通情况,如果出现不能导通情况,则说明未知的和已知的相反,如果都导通,则相同。
当电流垂直于外磁场通过半导体时,载流子发生偏转,垂直于电流和磁场的方向会产生一附加电场,从而在半导体的两端产生电势差,这一现象就是霍尔效应,这个电势差也被称为霍尔电势差。霍尔效应使用左手定则判断。
扩展资料:
在半导体上外加与电流方向垂直的磁场,会使得半导体中的电子与空穴受到不同方向的洛伦兹力而在不同方向上聚集,在聚集起来的电子与空穴之间会产生电场。
电场力与洛伦兹力产生平衡之后,不再聚集,此时电场将会使后来的电子和空穴受到电场力的作用而平衡掉磁场对其产生的洛伦兹力,使得后来的电子和空穴能顺利通过不会偏移。
固体材料中的载流子在外加磁场中运动时,因为受到洛仑兹力的作用而使轨迹发生偏移,并在材料两侧产生电荷积累,形成垂直于电流方向的电场,最终使载流子受到的洛仑兹力与电场斥力相平衡,从而在两侧建立起一个稳定的电势差即霍尔电压。
正交电场和电流强度与磁场强度的乘积之比就是霍尔系数。平行电场和电流强度之比就是电阻率。大量的研究揭示:参加材料导电过程的不仅有带负电的电子,还有带正电的空穴。
参考资料来源:百度百科——霍尔效应
二极管的工作原理图解
二极管的工作原理图解,可能很多人都没有听说过二极管,二极管其实在我们的生活中是一种比较常见的东西,我们的灯泡、屏幕等等都是由二极管制成,那二极管的工作原理图解是什么,一起来看看吧。
二极管的工作原理图解1二极管是最常用的电子元件之一,它最大的特性就是单向导电,也就是电流只可以从二极管的一个方向流过,二极管的作用有整流电路,检波电路,稳压电路,各种调制电路,主要都是由二极管来构成的。
二极管工作原理
晶体二极管为一个由p型半导体和n型半导体形成的p-n结,在其界面处两侧形成空间电荷层,并建有自建电常当不存在外加电压时,由于p-n结两边载流子浓度差引起的扩散电流和自建电场引起的漂移电流相等而处于电平衡状态。
N型、P型其实是针对载流子来说的,载流子分为电子和空穴,如果材料以电子载流子导电为主那么就叫N型,如果以空穴载流子导电为主那么就叫P型。因为电子带负电,所以N是negaTIve的缩写而空穴带正电,所以P是posiTIve的缩写。
PN二极管正向导电性
在PN结两端外加电压,称为给PN结以偏置电压,给PN结加正向偏置电压,即P区接电源正极,N区接电源负极,此时称PN结为正向偏置。反之为反向偏置。
PN结正向偏置
由于外加电源产生的外电场的方向与PN结产生的内电场方向相反,削弱了内电场,使PN结变薄,有利于两区多数载流子向对方扩散,形成正向电流,此时PN结处于正向导通状态
2、PN结反向偏置
给PN结加反向偏置电压,即N区接电源正极,P区接电源负极,称PN结反向偏置(简称反偏)
由于外加电场与内电场的方向一致,因而加强了内电场,使PN结加宽,阻碍了多子的扩散运动
二极管的结构主要是有PN结组成,二极管工作过程中所产生的正向导向性是是有PN结宽度的增减决定的。
外加电场与内电场的方向一致,因而加强了内电场,使PN结加宽,阻碍电子扩散,形成反向电流微弱。
二极管的工作原理图解2一、概述
发光二极管在我们生活中是比较常见的,比如说:商业的走字灯,交通灯,LED屏幕,LED灯泡等等。二极管是一种用锗或者硅半导体材料做成的,半导体材料导电性能在常温下介于导体和绝缘体之间,一百多年前就有这个东西了,是半导体器件家族中的元老了。
发光二极管只是二极管其中之一,还有许多不同用途的`二极管:整流二极管、稳压二极管、光电二极管、开关二极管等。整流二极管在我们生活中比较常见,都用在交流转直流的电路中:手机充电器,电脑充电器,电动车充电器等等。
二、PN结
上面说到的那些二极管它们都有一个共同的性能,单向导电性,就是说电流只能从二极管的阳极进去,负极出去,反过来就不行了。为什么呢?二极管中有个叫PN结的东西,就是它阻止了电流逆流。接下来小马哥就给小伙伴们讲讲PN 结。
自然界中的物质,按照不同的导电性能分为了导体、半导体和绝缘体,半导体材料导电性能介于导体和绝缘体之间。常用的半导体材料有四价硅和锗(zhě)。什么是四价啊,就是最外层有四个电子。纯净的半导体又称为本征半导体,其导电能力较差,不能直接用来制造半导体器件,在本征半导体一边中用扩散工艺掺入三价元素(硼),另一边掺入五价元素(磷),就是把原来少量的硅原子或者锗原子替代了。
三价元素(硼),最外层只有三个电子,然而硅和锗有外层有四个电子,少了一个怎么办呀?那就形成了空穴,这个就是P型半导体。于是,P型半导体就成为了含空穴浓度较高的半导体。
五价元素(磷)有五个电子,多一个怎么办?多出的一个电子几乎不受束缚,它就自由了,叫它自由电子,这个就是N型半导体。于是,N型半导体就成为了含电子浓度较高的半导体。
扩散运动和漂移运动
P型半导体和N型半导体结合后,P区内空穴和N区内自由电子多称为多子,P区内自由电子和N区内空穴几乎为零称为少子,在它们的交界处就出现了自由电子和空穴的浓度差。
由于P区的空穴浓度比N区高,空穴就往N区扩散,而N区的自由电子浓度比P区高,自由电子往P区扩散,就像一滴墨水滴在清水中,墨水本身浓度高,就往周围扩散,这就是扩散运动,P区的空穴和N区的自由电子就可能相遇,然后复合。什么是复合啊,把空穴比作房子,房子里面要住人啊,这时候自由电子就比作人了,然后他们就结合成一体了。
P区和N区里面的杂质离子不能任意移动,为啥呀?因为杂质离子被周围的硅原子或者锗原子束缚了。在P和N区交界面附近,形成了一个很薄的空间电荷区,在这个区域内,多子已扩散到对方并复合掉了,或者说消耗殆尽了。
P区和N区里面的杂质离子相互作用,N区杂质离子带正电荷,P区杂质离子带负电荷,在空间电荷区形成了内电场,扩散运动的进行使空间电荷区变宽,内电场也变强了。
这个内电场一方面阻止了扩散运动的进行,扩散就不容易进行下去;另一方面使空穴(少子)从N区往P区漂移,自由电子从P区往N区漂移,这个漂移可不是汽车漂移,是受N区高电势,P区低电势的内电场影响产生漂移,叫做少子漂移。
慢慢的空间电荷区就稳定了。总结来说多子运动叫做扩散运动,少子运动就是漂移运动,当两种运动达到动态平衡就产生了PN结。在PN结加上相应的电级引线和管壳,就构成了半导体二极管。由P区引出的电极成为了正极,由N区引出的电极成为了负极。
三、导通和截止
当PN结加正向导通电压就是把P区引脚加电源正极,N区引脚连接电源负极。电流方向由P区流向N区和PN 结内部的内电场相反,当电压大于内电场电压时,外部的电源抵消了其内电场。
内电场抵消了,有利于扩散运动的进行,空间电荷区慢慢变成了P区和N区,当空间电荷区越来越薄,直到最薄的时候这时候会形成一个扩散电流,这时候二极管也就导通了,这时候的电压称为导通电压。
反之把P区引脚加电源负极,N区引脚连接电源正极,这时候电流流动的方向和内电场的方向相同,增强了内电场使得空间电荷区变宽,空穴会被拉向P区的方向,电子会被拉向N区的方向,从而阻止了扩散运动,形成了反向漏电流,由于电流非常小,这就是截止状态。
反向电压增大到一定程度时,反向电流将突然增大。如果外电路不能限制电流,则电流会大到将PN结烧毁,这时候的电压成为击穿电压,这时候二极管就没用了。
二极管加正向偏置电压,死区OA区,由于正向电压比较小,二极管不导通,几乎没有电流,呈高阻状态,此时二极管两端的电压为死区电压,硅二极管为0.5V(锗管为0.1v),当正向电压高于一定的数值后,二极管中的电流随着电压的升高而增大,二极管导通,这时候的电压称为导通电压,也叫门槛电压。
硅管导通电压为0.6V(锗管为0.2v),导通时二极管两端的电压保持不变,硅管0.7V(锗管为0.3v),这时候称为正向压降。
当电子与空穴复合时能辐射出可见光,PN结掺杂不同的化合物发出的光也不同,比如说镓(Ga)、砷(As)、磷(P)、氮(N)等。然后加上引脚,用环氧树脂封装起来,通上正向电压发光二极管就这样发光了。
稳压二极管利用了二极管反向击穿的特性,稳压二极管都是串联在电路中,当稳压二极管被击穿,尽管电流在很大的范围内变化,而二极管两端的电压却基本上稳定在击穿电压上下。
在接二极管还要注意正负极,一般看外观来说,长引脚为正极,短引脚为负极,有些二极管的表面会有图形符号用万用表也可以测,把万用表调到二极管档,红黑表笔分别接二极管的两端,若此时万用表的读数小于1,红表笔接二极管的正极,黑表笔接二极管的负极。若读数为“1”,则黑表笔一端为正极。
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)