与以硅为代表的无机半导体材料相比,有机半导体具有成本低、材料多样性、功能可调、可柔性印刷制备等诸多优点。目前,基于有机发光二极管(OLED)的显示屏已经实现了商业化生产,并在手机和电视显示屏中获得广泛应用。而基于有机高分子材料作为光敏活性层的有机太阳能电池,具有材料结构多样性、可大面积低成本印刷制备、柔性、半透明甚至全透明等优点,具有无机太阳能电池技术所不具备的许多优良特性。除了作为正常的发电装置外,在其他领域如节能建筑一体化、可穿戴设备等方面亦具有巨大的应用潜力,引起了学术界和工业界的极大兴趣。“特别是近年来,有机太阳能电池的研究获得了突飞猛进的发展,光电转化效率不断刷新。目前科学界普遍认为有机太阳能电池已经到了商业化的‘黎明前夕’。”陈永胜说。
在对传统硅材料相关应用研究达到瓶颈时,科学家们试图寻找替代材料,二维材料因具备特殊的单原子层厚特点成为近年来的研究热门,尤其是二硫化钼(MoS2)、二硫化钨(WS2)、二硒化钼(MoSe2)、二硒化钨(WSe2)等过渡金属硫化物(TMDCs)具有优异的光电特性,比较传统硅作为晶体管材料时能够实现更高的电荷迁移率与更低的功率损耗。
斯坦福大学科研人员基于二硫化钼发明了一种仅原子厚度的高性能晶体管,长度不到100纳米,但可以实现在低电压运行时耐受高电流。这使得柔性电子产品达到“薄如蝉翼”的效果成为可能。相关研究成果发表在《Nature Electronics》上。
随着 科技 的发展,虽然柔性电子设备已经在日常生活中“随处可见”了,如颜值较高的曲屏手机、升级版酷炫可折叠手机、不会“硌人”的智能服饰等等,但是人们对柔性电子技术的 探索 仍未止步,至少在轻薄度、可延性等方面仍然具有很大的发展空间。
柔性电子技术一般是通过将有机或无机材料电子器件制作在柔性或可延性的基板上,以使得传统坚硬的电子设备柔性化,从而能够在不规则的条件下稳定运行。最早可以追溯到上世纪60年代,当时科研人员一般以塑料、金属、玻璃、橡胶为基板,并尝试用有机半导体替代硅等无机半导体。
一般而言,材料的轻薄度与其柔性是正相关的,然而对于电子设备而言,轻薄材料的电压耐受性一般比较差,在实际应用过程中存在很大的安全隐患,尤其是应用在医疗数据跟踪器等可穿戴设备当中,基板受热分解、漏电或者是数据异常反馈不及时等都可能对使用者造成生命危险。因此,如何保证电子设备在满足性能条件的前提下趋于轻薄化与小型化,是至今为止研究人员一直在攻克的重要难点之一。
斯坦福大学研究人员提出了一种新的基于层的工艺使超薄电子设备成为可能。他们首先在覆盖有玻璃涂层刚性硅基板上,利用化学气相沉积法使原子厚度MoS2薄膜叠加成为仅三个原子厚度的涂层,该涂层上方覆盖着纳米级图形结构金电极,随后浸入去离子水中将整个器件堆栈剥离,并转移到由聚酰亚胺制成的柔性基板上。
最终包括基板在内的整个柔性场效应晶体管结构厚度仅5微米,且分辨率高、功耗低、散热效果佳。
新工艺在无线通信、“贴肤”电子产品、人体芯片等领域中具有很大的应用前景,目前研究人员正在寻找商业化规模生产的方法。此外,他们尝试利用二硒化钼(MoSe2)和二硒化钨(WSe2)材料验证这种晶体管制造方法的多样性。
柔性太阳能电池现在主要分为三类,一类是以无机半导体材料制备的薄膜太阳能电池;一类是以有机或者高分子半导体材料制备的薄膜有机太阳能电池;一类是以纳米二氧化钛等制备的染料敏化太阳能电池。
其中第一类已经商业化应用了,效率达到10%左右。但是成本还是比较高的。
要想提高开路电压,主要是提高N型材料的HOMO和P型材料的LOMO之间的差值。也有报道说提高两个电极金属的逸出功之差,也有利于提高电池的开路电压。
而提高短路电流主要靠提高电池的量子效率,即把吸收的光子转化为电子和空穴的效率。通过提高电池对光的吸收、增加电池内部界面接触都可以提高量子效率。最主要的还是寻找比较合适的材料。另外,产生的电子和空穴在传输过程中有可能会重新复合,导致短路电流变小。一般可以通过结构设计,减少复合的机会来消除。
填充因子一部分于电池的内阻有关,也有一部分于电池的材料的特性有关。降低电池的厚度有可能可以增加填充因子。
更多资料可以参考 黄春辉院士编著的《光电功能超薄膜》,(北京大学出版社)一书,及其其他专业文献。
以上回答供您参考!希望对您有所帮助!
杭州图书馆
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)