对ISSG
工艺特性简单分析的基础上讨论了ISSG 氧化物
薄膜的可靠性问题。讨论了ISSG工艺及其相关的
氮化工艺对NBTI的改善原理。数据表明ISSG工艺及其相关的氮化工艺对NBTI效应有明显的改善作用。由于原子氧的强氧化作用,ISSG工艺中最终得到的氧化物薄膜体内缺陷少,界面态密度也比较小,氧化物薄膜的质量比较高。ISSG氮化工艺与传统炉管氧化物薄膜的氮化工艺的主要区别在于N所集中的位置不一样。ISSG工艺氮化是把等离子态的N +注入到多晶硅栅和SiQ 2的界面,不会增加SiQ 2和Si衬底的界面态,从而可以显著改善NBTI效应。而传统炉管氧化物薄膜的氮化是用NO或者N 2O把N注入到SiQ 2和Si衬底的界面,这样SiQ 2和Si的界面态就会增加,从而增强NBTI效应。
二氧化硅薄膜在集成电路中有着广泛的应用,它既可以作为MOS管的栅氧化层材料,又可以作为集成电器间的绝缘介质。ISSG (In-Situ Steam Generation), 全称原位水气生成,是一种新型低压快速氧化热退火技术(RTP,Rapid Thermal Process),目前主要用于超薄氧化薄膜生长,牺牲氧化层以及氮氧薄膜的制备。 在对ISSG工艺特性做了简单分析的基础上讨论了ISSG 氧化物薄膜的可靠性问题,也讨论了ISSG工艺及其相关的氮化工艺对NBTI的改善原理。锗、硅、硒、砷化镓及许多金属氧化物和金属硫化物等物体,它们的导电能力介于导体和绝缘体之间,叫做半导体。
半导体具有一些特殊性质。如利用半导体的电阻率与温度的关系可制成自动控制用的热敏元件(热敏电阻);利用它的光敏特性可制成自动控制用的光敏元件,像光电池、光电管和光敏电阻等。
半导体还有一个最重要的性质,如果在纯净的半导体物质中适当地掺入微量杂质测其导电能力将会成百万倍地增加。利用这一特性可制造各种不同用途的半导体器件,如半导体二极管、三极管等。
把一块半导体的一边制成P型区,另一边制成N型区,则在交界处附近形成一个具有特殊性能的薄层,一般称此薄层为PN结。图中上部分为P型半导体和N型半导体界面两边载流子的扩散作用(用黑色箭头表示)。中间部分为PN结的形成过程,示意载流子的扩散作用大于漂移作用(用蓝色箭头表示,红色箭头表示内建电场的方向)。下边部分为PN结的形成。表示扩散作用和漂移作用的动态平衡。
评论列表(0条)