再见了,EUV光刻机?

再见了,EUV光刻机?,第1张

“本文原创,禁止抄袭,违者必究”

作为全球半导体设备制造巨头的ASML公司,几乎全球的光刻设备都是由它提供的。不仅是DUV光刻机占据着绝大多数的市场份额,在EUV光刻设备上更是只有它造得出来,处于垄断地位。

随着芯片紧缺愈演愈烈,为了缓解芯片紧缺的问题,各个芯片大厂在扩厂生产的需求下争相向ASML订购EUV光刻机。

但随着“芯片规则”的修改和全球公共卫生问题的产生,ASML的光刻设备自由出货受到限制,芯片的制造成本也在不但增加,甚至有些光刻零件供应链开始延迟出货。

在此背景下,越来越多的企业开始寻求其他路径,以求绕过EUV光刻设备,制造出先进制程的芯片。

英特尔就研发出新型 3D 堆叠、多芯片封装技术,该项技术被命名为Foveros Direct。它能够应用于多种芯片混合封装的场景,不仅能够将 CPU、GPU、IO 芯片以相邻或者层叠的方式紧密结合在一起,还能兼容不同厂商的芯片进行混合封装。

2021 年 7 月英特尔更是推出了 RibbonFET 新型晶体管架构,通过将 NMOS芯片 和 PMOS芯片堆叠在一起,在制程不变的情况下,晶体管密度提升了 30% 至 50%。通过这项技术,芯片制程缩小到10nm以下,最多能达到5nm。

日本铠侠公司联合佳能开发出新的NIL(纳米压印微影技术)工艺,它是一种将纳米图案印章转移到晶圆上的技术。

它的工作原理是 基于机械复制的,通过印刷技术与微电子加工工艺相互融合,使用电子束刻蚀的方式,不受光学衍射的限制。能够解决光衍射现象造成的分辨率极限问题,实现让电路线宽变得更窄,理论上来说分辨率会比EUV光刻机要高。

NIL的微影制程相对来说较为单纯,耗电量能比EUV光刻机减少10%,在设备的投资成本上也节省了40%,目前已经可以实现15nm制程的量产并应用到NAND闪存制造上,预计到2025年最高能产出5nm精密度制程的芯片。

适合工业化、低成本且具有高效率的优势让它一经推出就受到业内的重视,越来越多厂家对它感兴趣并进行询问。

俄罗斯初期投入 6.7 亿卢布用于X射线光刻机的制造。目前MIET(俄罗斯莫斯科电子技术学院)已经承接了该项目。根据当地媒体的说法,X射线光刻机性能甚至能与EUV光刻机比肩。

不同于EUV的极紫外技术,俄罗斯自研的光刻机使用的是X射线技术。从光刻设备的发展历程来看,越是高端的光刻设备,波长越短曝光分辨率就越高。

EUV的极紫外波长 为13.5nm, X 射线的波长在 0.01nm 到 10nm 之间,光从波长来看, X 射线光刻机是比EUV光刻机有优势的,不需要光掩模版的直写光刻方式也使成本大为降低。

但X 射线穿透性太强,只能用于直写光刻导致速度太慢,目前MIET面临的最大问题就是在工艺以及效率的提升上。

俄罗斯虽然半导体产业不发达,但在X射线和等离子这方面的技术上有着深厚的基础,要提升工艺实现量产并非不可能。

Chiplet 技术就是我们常听到的“小芯片”技术。目前国际上很多知名企业都在发展“小芯片”技术。

如全球规模最大的芯片代工厂——台积电,就自研出新的3D芯片封装工艺,通过将两枚低制程芯片用先进的3D封装工艺封装在一起,能提升1.5倍的性能。

对于3D封装技术,台积电还在不断进行试验和优化,目前最高已经能产出3nm制程的芯片。只是良品率还不高,成本消耗也更大。但对于能绕开EUV光刻机实现自主生产,就意味着能拥有自主权实现自由出货,这就是值得的。

苹果公司最新推出的M1 Ultra芯片也是将两枚M1芯片并列粘合在一起组成的,经过检测,M1 Ultra芯片的性能甚至比A15还要高出65%。

华为在5G芯片得不到供应之后,也明确表示会采用芯片堆叠技术,用面积换取性能。目前华为已经开发出芯片堆叠封装及终端设备并申请了专利。

在本就是自研芯片的基础上,有了自己的设备,华为要生产出芯片是不难的。

这些企业纷纷进入芯片相关产程自研,就是为了绕开EUV光刻设备的限制实现芯片自由。已经不能自由出货的ASML对各商家来说负面影响是很大的,不仅芯片的增产计划受到影响,可能客户的订单都不能如期交付。

而且,在美方技术的限制下,ASML已经隐隐有被 *** 控的迹象,避免EUV光刻机的限制,也是在挣脱老美在半导体领域的限制。

这也表明,如果ASML无法实现自主出货,终将会被时代抛弃。

对于各个企业纷纷开始自研光刻设备和芯片技术,大家有什么想法呢?欢迎在评论区留下您独到的见解。

拥有超过100,000个组件,这样的EUV光刻系统是有史以来最复杂的机器之一。它由连续生产的最强大的激光系统泵送。总重量为180吨,耗电量超过1兆瓦,单台EUV光刻机的售价高达1.2亿美元。

在EUV光刻技术之前,DUV大行其道。然而随着工艺技术的发展,大型晶圆代工厂已经迫不及待地要调到更先进制程。基于包括Trumpf(德国Ditzingen),Zeiss(德国Oberkochen)和ASML(荷兰Veldhoven )等高 科技 公司之间的独特联盟,EUV光科主要技术问题才得以解决。

为何选择EUV?

极紫外(有时也称为XUV)表示波长在124和10nm之间的软X射线或10eV和124eV之间的光子能量。

到目前为止,芯片制造商已经使用紫外(激光)光将复杂的图案投射到涂有光致抗蚀剂的硅晶片上。在类似于旧纸张照片的开发的过程中,这些图案被开发并成为一层内的导电或隔离结构。重复该过程,直到形成诸如微处理器的集成电路的复杂系统完成。

这种光刻系统的发展受经济驱动:需要更多的计算能力和存储容量,同时必须降低成本和功耗。这种发展可以用一个简单的规则来描述,这个规则被称为摩尔定律,它说密集集成电路中的晶体管数量大约每两年增加一倍。

一个主要的限制来自光学定律。德国物理学家恩斯特·阿贝发现显微镜d的分辨率(大致)限于照明中使用的光的波长λ:

d = λ/(n sin(α))(1)

其中n是透镜和物体之间介质的折射率,α是物镜光锥的半角。对于光刻,用数值孔径(NA)代替n sin(α)并在公式中加入因子k(因为光刻分辨率可以用照明技巧强烈调整),最小可行结构或临界尺寸(CD)是:

CD = kλ / NA(2)

该公式控制着所有光刻成像过程,这使得波长成为如此重要的参数变得明显。因此,工程师们一直在寻找波长越来越短的光源,以生产出更小的特征。从紫外汞蒸汽灯开始,他们转向波长为193纳米的准分子激光器。英特尔在2003年5月宣布,它将下一步采用157纳米准分子激光器,而不是采用波长为13.5纳米的EUV,因此光刻行业获得了惊喜。光学材料的问题被视为主要障碍,EUV似乎只是一些发展步骤。

当时据报道,英特尔研究员兼公司光刻资本设备运营总监彼得西尔弗曼提出了一个问题路线图显示2009年将为32纳米节点部署EUV。事实证明这是过于乐观了,人们不得不想方设法利用193纳米光源通过沉浸式光刻和复杂的照明技巧等技术来实现更小的特征。

用于工业的EUV光源

EUV光刻必须解决许多问题。首先,需要强大的光源。在21世纪初期,基于放电等离子体的光源(如 Xtreme Technologies公司吹捧)似乎最有利,但不久之后激光产生的等离子体源显示它们最适合放大。

最后,总部位于圣地亚哥的Cymer公司凭借使用CO 2激光器从30微米锡滴产生EUV辐射的系统赢得了比赛。虽然他们在2007年推出了一个相当不稳定的30 W光源,但在2014年他们首次展示了如何达到250 W,这个数字被认为是大批量生产的突破。提高EUV转换过程的效率是一项很好的应用研究,毕竟使EUV光刻成为可行。为了加快进度(并确保其唯一供应商),ASML于2012年收购了Cymer。

为商业可行性提供足够的EUV辐射的最终解决方案,是给人留下深刻印象的机器。该机器基于串联生产中最强大的激光器:40 kW CO 2激光器。整个系统需要1兆瓦的电源。由于只有200 W功率的微小部分用于处理晶圆,因此冷却是一个主要问题。

该技术的唯一供应商是德国Ditzingen的TRUMPF。TRUMPF老板兼首席技术官Peter Leibinger非常清楚他的公司的角色:“如果我们失败,摩尔定律将停止。当然,世界并不依赖于TRUMPF,但如果没有TRUMPF,芯片行业就可能无法继续延续摩尔定律,“他在2017年接受采访时表示。

典型CO 2TRUMPF的激光器可以提供几千瓦的连续波(CW)辐射。这适合切割钢材。对于EUV,TRUMPF开发了一种激光器,可以50 kHz的重复频率产生40 kW的脉冲辐射。具有两个播种机和四个放大级的激光器非常大,必须放置在EUV机器下方的单独地板上。

为了跟上市场需求,TRUMPF在一个全新的工厂投入了大量资金,为这些激光器提供了10个生产区。通过10周时间将它们组合在一起,该公司现在每年可以容纳50个系统。目前已经有44个系统在实地,预计2019年还将有30个系统出货。

该机器具有玻璃心脏

虽然泵浦激光器是一种真正独特的机器,但EUV光刻系统中的光学器件同样具有挑战性。首先,必须用巨大的镜子收集来自微小锡滴的等离子体辐射。EUV收集器的直径为650 mm,收集立体角为5 sr。13.5nm处的平均反射率高于40%。

根据SEMICON West会议报告,反射率随时间线性下降:“他们目前的客户安装了NXE:3400B系统,Yen报告的每千兆脉冲降解率约为0.15%。ASML希望在相同功率(250 W)下将其降至低于0.1%/ GP。“换句话说,功率在90天内下降约50%。交换收集器大约需要一天时间,ASML打算用下一代NXE:3400将其减少到不到8小时。报告称,最终目标是95%的可用性,这是目前所有DUV机器的用武之地。

一旦珍贵的EUV光离开收集器,它就会被一组超精密镜子进一步形成和投射。最终表面的粗糙度为0.1nm以下更好,相当于氢原子的直径。光学系统由另一位德国冠军卡尔蔡司半导体制造技术公司(Zeiss SMT)制造,该公司是合作伙伴中第三家建立这些独特高 科技 机器的公司。

注 - NXE:3400系统的分辨率约为13 nm这指的是公式(2)和实际的栅极间距。这与芯片制造商经常讨论的“节点”非常不同。最初,节点指的是晶体管的栅极长度。显然,这可以根据工艺和制造商的不同而不同。然而,今天,节点仅涉及由芯片制造商开发的某个过程,并且不直接对应于光学器件的分辨率。例如,芯片制造商使用类似的EUV机器参考其专有工艺,推出7纳米或3纳米节点。

EUV光刻技术的三驾马车

虽然EUV光 科技 术整体涉及1000多家供应商,但核心技术由Trumpf,Zeiss和ASML制造。他们在EUV项目中开发了非常规的合作形式。来自Trumpf的Peter Leibinger将其称为“几乎合并的公司”,其开放式政策和广泛的人员和技术交流。

Zeiss SMT与ASML有着悠久的 历史 ,因为该公司于1983年为飞利浦生产了第一台光刻光学器件这项业务于1984年分拆出来并命名为ASML。

在EUV之前,Zeiss和ASML共同征服了光刻系统市场。2010年,他们已经拥有光刻系统约75%的市场份额。到目前为止,他们是工业级EUV系统的唯一供应商。为了促进这种关系,ASML在2016年11月以大约10亿欧元的价格购买了Zeiss SMT 24.9%的股份。此外,ASML承诺支持Zeiss SMT六年的研发工作,投资2.2亿欧元,加上一些5.4亿欧元的投资支持。

由于Zeiss SMT在EUV上大量投资,所以这笔钱非常需要。该公司在德国Oberkochen附近建立了制造和计量大厅目前,它正在完成下一代具有更高NA的EUV光学器件的准备工作。另外7亿欧元的投资。这包括用于光学系统计量的卡车大小的高真空室。在这些腔室中测试的镜面最大公差为0.5 nm,因此它们采用了业内有史以来最精确的对准和计量技术。

180吨工具的最终组装

Zeiss SMT拥有一个巨大的高 科技 设施,但其规模最大的是阿斯姆公司的Veldhoven工厂的制造大厅。2018年,Zeiss SM的员工增长了21%,目前拥有超过800名博士和超过7500名工程师,总人数为23,000人。

在制造大厅中,EUV步进机器已经完成。目前的顶级车型NXE:3400B重180吨,需要20辆卡车或3辆满载的波音747发货。价格是1.2亿美元。它可以每小时处理125片晶圆,分辨率低至13纳米。

在2019年下半年,宣布升级的NXE:3400C的装运。它将采用更高透射率的光学元件,模块化容器,可显着提高维修保养方便性,以及更快的光罩和晶圆处理器,以支持更高的生产率。这些器件每小时可实现170个晶圆吞吐量。

EUV之后是什么?

到目前为止,EUV光学系统已达到0.33的NA。下一代(ASML宣布该机器为NXE Next)的NA为0.55,分辨率小于8 nm。它包含更大的光学元件,而这也是Zeiss SMT公司的努力方向,并且该公司今年已经开始生产。

作为这些共同努力的结果,显然该技术被驱动到其物理极限,从而实现迄今为止无法想象的规范。例如,光刻系统内的晶片被保持在特殊的玻璃板(所谓的晶片夹具)上。它们以高达3g的加速度移动,将晶圆保持在精确到一纳米的位置。同时,晶片由EUV光照射,热负荷为30kW / m 2,而不会失去其精确位置。

尽管仍在讨论许多技术问题,但市场似乎非常有信心EUV光刻技术将在可预见的未来为半导体产业带来实质性利益。

但在高NA EUV之后会发生什么?到目前为止,似乎还没有认真的答案。一方面,一些研究小组正在准备更短的波长。德国弗劳恩霍夫协会的两个机构于2016年完成了一项关于“超越EUV”的研究项目。他们研究反射涂层(IOF)和等离子体源(ILT)的6.7 nm波长。瑞士集团在2015年总结了光刻胶研究。诸如冲压或电子束光刻的纳米图案的替代方法正在发展。2017年的“模式路线图”试图讨论其进一步发展。

目前,ASML及其盟友在他们的高 科技 大制造厅中建造并展示了,这个时代最大和最先进的技术系统。但是,如果从远处看这一发展,似乎光刻技术的复杂性已达到其可行的最大值。未来EUV光刻技术要得到进一步的实质性进展,将需要完全不同的方法来满足增加的数据存储和处理要求。


欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/dianzi/9145174.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-04-25
下一篇 2023-04-25

发表评论

登录后才能评论

评论列表(0条)

保存