激发光谱(PLE)和发射光谱(PL)。激发光谱:固定发射光的波长,改变激发光的波长,记录荧光强度随激发波长的变化。发射光谱:固定激发光的波长,记录不同发射波长处荧光强度随发射波长的变化。
无论是激发还是发射荧光光谱图,其都是记录发射荧光强度随波长的变化。如果荧光光谱中纵坐标为强度,横坐标为波长。那么就能获取峰位和半峰宽。峰位的直观体现是荧光的颜色;半峰宽则表示荧光的纯度。
光致发光光谱
光致发光光谱(Photoluminescence Spectroscopy,简称PL谱),指物质在光的激励下,电子从价带跃迁至导带并在价带留下空穴;电子和空穴在各自的导带和价带中通过弛豫达到各自未被占据的最低激发态(在本征半导体中即导带底和价带顶),成为准平衡态。
准平衡态下的电子和空穴再通过复合发光,形成不同波长光的强度或能量分布的光谱图。光致发光过程包括荧光发光和磷光发光。
光谱应用
在激发光能量不是非常大的情况下,PL测试是一种无损的测试方法,可以快速、便捷地表征半导体材料的缺陷、杂质以及材料的发光性能。
1、组分测定;对三元系或四元系合金,如InxGa1-xN等,通过PL峰位确定半导体材料的禁带宽度,进而确定材料组分x。
2、杂质识别;通过光谱中的特征谱线位置,可以识别材料中的杂质元素。
3、杂质浓度测定。
4、变温Pl可以测试材料/器件的发光效率。
5、半导体材料的少数载流子寿命。
6、位错等缺陷的相关作用研究。
1. 深紫外发光光谱技术简介
深紫外发光光谱是研究半导体材料物理性质的一种重要手段。通常所说的半导体发光是半导体中电子从高能态跃迁至低能态时,伴之以发射光子的辐射复合。我们利用深紫外激光器产生的激光或电子q发出的电子束到达样品室并入射到样品表面,样品发出的荧光信号被收集进入单色仪,该信号经单色仪分光后由探测系统探测,计算机对探测信号进行采集并形成最终的深紫外发光光谱。
2. 供测量的光谱类型及其应用范围
光致发光(PL):使用飞秒激光激发样品,波长:(1)177nm;(2)210nm-330nm可调;(3)345nm-495nm可调;(4)690nm-990nm可调。PL光谱可以实现稳态光谱和瞬态(时间分辨)光谱的测量。稳态光谱可用于研究半导体材料的基本物理性质,如晶体结构、电子态、声子结构、杂质、缺陷、激子复合机制等。瞬态光谱采用条纹相机探测,既可以得到不同时刻的时间分辨光谱,也可以得到某一波长处的荧光衰退曲线,时间分辨率为2ps。可以用来研究半导体材料载流子动力学性质。
阴极荧光(CL):使用电子束激发样品,最大能量30keV。可用于表征宽禁带半导体材料性质。波长扫描范围:170nm-800nm。
3、深紫外发光光谱测试设备介绍:
1. PL光谱
技术参数与能力:
波长:690nm-990nm,345nm-495nm和210nm-330nm三个波段内可调,最小激光波长可达177nm
波长扫描范围:170nm-800nm
温度范围:8K-350K
时间分辨率(瞬态光谱):2ps
狭缝、步长及激光功率视具体情况而定
2. CL光谱
技术参数与能力:
电子束能量:最高可达30keV
波长扫描范围:170nm-800nm
温度范围:8K-350K
狭缝和步长视具体情况而定
-------------米格实验室
PL(photoluminescence)光致发光 光致发光(PL)是一种用于提供半导体材料的电学、光学特性信息的光谱技术,可以研究带隙、发光波长、结晶度和晶体结构以及缺陷信息等等欢迎分享,转载请注明来源:内存溢出
评论列表(0条)