什么是pn结及半导体基础知识

什么是pn结及半导体基础知识,第1张

当 N 型半导体和 P 型半导体材料首次结合在一起时,PN 结两侧之间存在非常大的密度梯度。结果是,来自施主杂质原子的一些自由电子开始迁移穿过这个新形成的结,以填充 P 型材料中的空穴,从而产生负离子。

然而,由于电子已经从 N 型硅穿过 PN 结移动到 P 型硅,它们在负侧留下带正电的施主离子 ( N D ),现在来自受主杂质的空穴迁移穿过反方向的结进入有大量自由电子的区域。

结果,沿结的 P 型电荷密度被带负电的受体离子( N A )填充,沿结的 N 型电荷密度变为正。这种跨越 PN 结的电子和空穴的电荷转移称为扩散。这些 P 层和 N 层的宽度取决于每一侧分别掺杂受主密度N A和施主密度N D的程度。

这个过程来回持续,直到已经穿过结的电子数量具有足够大的电荷以排斥或阻止任何更多的电荷载流子穿过结。最终将出现平衡状态(电中性情况),当供体原子排斥空穴而受体原子排斥电子时,在结区域周围产生一个“势垒”区域。

由于没有自由电荷载流子可以停留在存在势垒的位置,因此与远离结的 N 和 P 型材料相比,结两侧的区域现在完全耗尽了任何更多的自由载流子。PN 结周围的这个区域现在称为耗尽层。

PN 结每一侧的总电荷必须相等且相反,才能在结周围保持中性电荷状态。如果耗尽层区域的距离为D,则它因此必须在正极侧穿透Dp的距离,在负极侧穿透Dn的距离,给出两者之间的关系: Dp*N A = Dn*N D 以保持电荷中性也称为平衡。

由于 N 型材料失去了电子而 P 型材料失去了空穴,因此 N 型材料相对于 P 型变为正。然后,在结的两侧存在杂质离子会导致在该区域上建立电场,N 侧相对于 P 侧处于正电压。现在的问题是,自由电荷需要一些额外的能量来克服现在存在的势垒,才能穿过耗尽区结。

在PN结的两端之间施加一个合适的正向电压(正向偏压)可以为自由电子和空穴提供额外的能量。克服目前存在的这种势垒所需的外部电压在很大程度上取决于所使用的半导体材料的类型及其实际温度。

通常在室温下,硅耗尽层两端的电压约为 0.6 – 0.7 伏,锗约为 0.3 – 0.35 伏。即使设备没有连接到任何外部电源,这种势垒也始终存在,如二极管所示。

这种跨结的内置电位的意义在于它反对空穴和电子穿过结的流动,这就是为什么它被称为势垒的原因。在实践中,PN 结是在单晶材料中形成的,而不是简单地将两个单独的部件连接或熔合在一起。

这一过程的结果是 PN 结具有整流电流-电压(IV 或 I-V)特性。电触点熔接到半导体的任一侧,以现与外部电路的电连接。制成的电子器件通常称为PN 结二极管或简称为信号二极管。

然后我们在这里看到,可以通过将不同掺杂的半导体材料连接或扩散在一起来制造 PN 结,以生产称为二极管的电子器件,该器件可用作整流器、所有类型的晶体管、LED、太阳能电池的基本半导体结构,以及更多这样的固态设备。

半导体之所以被称之为“半导体”,其原因很简单,说通俗一点儿就是这种由P型材料与N型材料 组成的东东,其导电性能是介于 绝缘体和导体之间的一个值,因此得名为“半导体”。超导体自然其导电性能高于半导体。其实不管一个什么东东,其名字和人名一样 都是代名词。都是由发明创造它的人 为之命名。在这里,P型半导体 的P 是取英文单词Positive(正极)的首字母;同理,N型半导体是取Negative(负极)的首字母。所以,有P型半导体、N型半导体这样的叫法,就不奇怪了。在模拟电子技术中,二极管就是由P型半导体和N型半导体构成,其内部(P与N的接触面)有一个PN结, 估计你又要问为什么 不是NP结呢? 其实PN和NP都差不多,只是遵循我们的习惯罢了。 人们常常都说正负极,而很少有人说 负正极。一样的道理! 希望我的回答 能够解除你的疑惑!! 楼上说得也很有道理!!

PN结。采用不同的掺杂工艺,通过扩散作用,将P型半导体与N型半导体制作在同一块半导体(通常是硅或锗)基片上,在它们的交界面就形成空间电荷区称PN结。PN结具有单向导电性。P是positive的缩写,N是negative的缩写,表明正荷子与负荷子起作用的特点。一块单晶半导体中 ,一部分掺有受主杂质是P型半导体,另一部分掺有施主杂质是N型半导体时 ,P 型半导体和N型半导体的交界面附近的过渡区称为PN结。PN结有同质结和异质结两种。用同一种半导体材料制成的 PN 结叫同质结 ,由禁带宽度不同的两种半导体材料制成的PN结叫异质结。


欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/dianzi/9153442.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-04-25
下一篇 2023-04-25

发表评论

登录后才能评论

评论列表(0条)

保存