半导体的类型-N型、P型是怎样定义和区别的?

半导体的类型-N型、P型是怎样定义和区别的?,第1张

下面,我们将采用对比分析的方法来认识P型半导体和N型半导体。

P型半导体也称为空穴型半导体。P型半导体即空穴浓度远大于自由电子浓度的杂质半导体。在纯净的硅晶体中掺入三价元素(如硼),使之取代晶格中硅原子的位子,就形成P型半导体。在P型半导体中,空穴为多子,自由电子为少子,主要靠空穴导电。空穴主要由杂质原子提供,自由电子由热激发形成。掺入的杂质越多,多子(空穴)的浓度就越高,导电性能就越强。

N型半导体也称为电子型半导体。N型半导体即自由电子浓度远大于空穴浓度的杂质半导体。在纯净的硅晶体中掺入五价元素(如磷),使之取代晶格中硅原子的位置,就形成了N型半导体。在N型半导体中,自由电子为多子,空穴为少子,主要靠自由电子导电。自由电子主要由杂质原子提供,空穴由热激发形成。掺入的杂质越多,多子(自由电子)的浓度就越高,导电性能就越强。

扩展资料

半导体( semiconductor),指常温下导电性能介于导体(conductor)与绝缘体(insulator)之间的材料。半导体在收音机、电视机以及测温上有着广泛的应用。如二极管就是采用半导体制作的器件。半导体是指一种导电性可受控制,范围可从绝缘体至导体之间的材料。无论从科技或是经济发展的角度来看,半导体的重要性都是非常巨大的。今日大部分的电子产品,如计算机、移动电话或是数字录音机当中的核心单元都和半导体有着极为密切的关连。常见的半导体材料有硅、锗、砷化镓等,而硅更是各种半导体材料中,在商业应用上最具有影响力的一种。

以GaN(氮化镓)为代表的第三代半导体材料及器件的开发是新兴半导体产业的核心和基础,其研究开发呈现出日新月异的发展势态。GaN基光电器件中,蓝色发光二极管LED率先实现商品化生产 成功开发蓝光LED和LD之后,科研方向转移到GaN紫外光探测器上 GaN材料在微波功率方面也有相当大的应用市场。氮化镓半导体开关被誉为半导体芯片设计上一个新的里程碑。美国佛罗里达大学的科学家已经开发出一种可用于制造新型电子开关的重要器件,这种电子开关可以提供平稳、无间断电源。

参考资料

半导体-百度百科

1、形成原因不同

在半导体中掺入施主杂质,就得到N型半导体;施主杂质:周期表第V族中的某种元素,例如砷或锑。

在半导体中掺入受主杂质,就得到P型半导体;受主杂质:周期表中第Ⅲ族中的一种元素,例如硼或铟。

2、导电特性不同

P型半导体的导电特性:它是靠空穴导电,掺入的杂质越多,多子(空穴)的浓度就越高,导电性能也就越强。

N型半导体的导电特性:掺入的杂质越多,多子(自由电子)的浓度就越高,导电性能也就越强。

3、定义不同

N型半导体,也称为电子型半导体。N型半导体即自由电子浓度远大于空穴浓度的杂质半导体。 “N”表示负电的意思,取自英文Negative的第一个字母。在这类半导体中,参与导电的 主要是带负电的电子,这些电子来自半导体中的施主。

P型半导体,也称为空穴型半导体。P型半导体即空穴浓度远大于自由电子浓度的杂质半导体。由于P型半导体中正电荷量与负电荷量相等,故P型半导体呈电中性。

主要特点:

半导体五大特性∶掺杂性,热敏性,光敏性,负电阻率温度特性,整流特性。

在形成晶体结构的半导体中,人为地掺入特定的杂质元素,导电性能具有可控性。

在光照和热辐射条件下,其导电性有明显的变化。

晶格:晶体中的原子在空间形成排列整齐的点阵,称为晶格。

共价键结构:相邻的两个原子的一对最外层电子(即价电子)不但各自围绕自身所属的原子核运动,而且出现在相邻原子所属的轨道上,成为共用电子,构成共价键。

【n型半导体】“n”表示负电的意思,在这类半导体中,参与导电的主要是带负电的电子,这些电子来自半导体中的“施主”杂质。所谓施主杂质就是掺入杂质能够提供导电电子而改变半导体的导电性能。例如,半导体锗和硅中的五价元素砷、锑、磷等原子都是施主杂质。如果在某一半导体的杂质总量中,施主杂质的数量占多数,则这种半导体就是n型半导体。如果在硅单晶中掺入五价元素砷、磷。则在硅原子和砷、磷原子组成共价键之后,磷外层的五个电子中,四个电子组成共价键,多出的一个电子受原子核束缚很小,因此很容易成为自由电子。所以这种半导体中,电子载流子的数目很多,主要kao电子导电,叫做电子半导体,简称n型半导体。【p型半导体】“p”表示正电的意思。在这种半导体中,参与导电的主要是带正电的空穴,这些空穴来自于半导体中的“受主”杂质。所谓受主杂质就是掺入杂质能够接受半导体中的价电子,产生同数量的空穴,从而改变了半导体的导电性能。例如,半导体锗和硅中的三价元素硼、铟、镓等原子都是受主。如果某一半导体的杂质总量中,受主杂质的数量占多数,则这半导体是p型半导体。如果在单晶硅上掺入三价硼原子,则硼原子与硅原子组成共价键。由于硼原子数目比硅原子要少很多,因此整个晶体结构基本不变,只是某些位置上的硅原子被硼原子所代替。硼是三价元素,外层只有三个价电子,所以当它与硅原子组成共价键时,就自然形成了一个空穴。这样,掺入的硼杂质的每一个原子都可能提供一个空穴,从而使硅单晶中空穴载流子的数目大大增加。这种半导体内几乎没有自由电子,主要kao空穴导电,所以叫做空穴半导体,简称p型半导体。【p-n结】在一块半导体中,掺入施主杂质,使其中一部分成为n型半导体。其余部分掺入受主杂质而成为p型半导体,当p型半导体和n型半导体这两个区域共处一体时,这两个区域之间的交界层就是p-n结。p-n结很薄,结中电子和和空穴都很少,但在kao近n型一边有带正电荷的离子,kao近p型一边有带负电荷的离子。这是因为,在p型区中空穴的浓度大,在n型区中电子的浓度大,所以把它们结合在一起时,在它们交界的地方便要发生电子和空穴的扩散运动。由于p区有大量可以移动的空穴,n区几乎没有空穴,空穴就要由p区向n区扩散。同样n区有大量的自由电子,p区几乎没有电子,所以电子就要由n区向p区扩散。随着扩散的进行,p区空穴减少,出现了一层带负电的粒子区;n区电子减少,出现了一层带正电的粒子区。结果在p-n结的边界附近形成了一个空间电荷区,p型区一边带负电荷的离子,n型区一边带正电荷的离子,因而在结中形成了很强的局部电场,方向由n区指向p区。当结上加正向电压(即p区加电源正极,n区加电源负极)时,这电场减弱,n区中的电子和p区中的空穴都容易通过,因而电流较大;当外加电压相反时,则这电场增强,只有原n区中的少数空穴和p区中的少数电子能够通过,因而电流很小。因此p-n结具有整流作用。当具有p-n结的半导体受到光照时,其中电子和空穴的数目增多,在结的局部电场作用下,p区的电子移到n区,n区的空穴移到p区,这样在结的两端就有电荷积累,形成电势差。这现象称为p-n结的光生伏特效应。由于这些特性,用p-n结可制成半导体二极管和光电池等器件。如果在p-n结上加以反向电压(n区加在电源正极,p区加在电源负极),电压在一定范围内,p-n结几乎不通过电流,但当加在p-n结上的反向电压越过某一数值时,发生电流突然增大的现象。这时p-n结被击穿。p-n结被击穿后便失去其单向导电的性能,但结并不一定损坏,此时将反向电压降低,它的性能还可以恢复。根据其内在的物理过程,p-n结击穿可分为雪崩击穿和隧道击穿两种。


欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/dianzi/9155439.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-04-25
下一篇 2023-04-25

发表评论

登录后才能评论

评论列表(0条)

保存