温差半导体发电是一种新型的发电方式,即利用塞贝克效应将热能直接转换为电能:
P型和N型结合的半导体元件组成的器件的一侧维持在低温,另一侧维持在高温,这样器件高温侧就会向低温侧传导热能并产生热流。即热能从高温侧流入器件内,通过器件将热能从低温侧排出时,流入器件的一部分热能不放热,并在器件内变成电能,输出直流电压和电流。通过连接多个这样的器件便可获得较大的电压。该器件即为目前应用日益广泛的温差发电片。
由半导体温差发电片制造的半导体发电机有着无噪音、寿命长、性能稳定等特点,同时体积小,重量轻,便于携带,成为了一种应用广泛的便携电源。目前主要用于油田、野外、军事等领域,同时越来越多地应用于小家电制造、仪器仪表、玩具及旅游业等行业。
随着现代社会保护环境、节约能源的呼声越来越高、人们更多地在考虑如何有效地将太阳热、海洋热、地热、工业废热、燃烧垃圾的发热等地球上各种热源产生的热能转化为电能。因此半导体温差发电技术必将得到更广泛的应用。
温差发电目前来说包括海水温差发电(工质推动汽轮机做功发电)和半导体温差发电片的应用。海水温差发电的话,在冷热海水流速一定的情况下,温差的大小直接影响发电效率。半导体温差发电片应用的话,按照Seebeck效应来说,只要存在温差就能发电,但指的是存在温差电动势,也就是在Seebeck系数不变的情况下,温差越大,温差电动势也就越大,但能否产生对应的理论电量,必须参考热流密度,热流量和冷端的热沉换热系数。半导体温差发电过程中的热力学问题是很复杂的,但可以简单的从物理学角度理解为:向P型半导体热端提供能量(热能),载流子(电子)吸热逸出往冷端扩散和定向移动,从而产生温差电动势和电流。1.在热流密度和冷端的热沉换热系数不变的情况下,温差增大,温差电动势随之增大,但电流下降。2.在温差不变的情况下,增大热流密度(同时加大冷端的热沉换热系数)到一定的值,可提高10%-25%的发电效率(视材料而定)。3.在温差和热流密度不变的情况下,加大冷端的热沉换热系数,电压不变,电流增加。4.电偶臂越长,其内部温度达到平衡所需的时间越长,内阻增大,导致电流变小。5.电偶臂截面面积越大,内阻越小,电流增大。按现在的技术来看,因为材料问题,民用市场能买到的温差发电片的热电转换效率只有4-8%左右,实用性不高。欢迎分享,转载请注明来源:内存溢出
评论列表(0条)