1nm光刻机意味着什么

1nm光刻机意味着什么,第1张

目前荷兰ASML公司正在研发制造全新一代EUV光刻机,其被命名为NA EUV光刻机,而NA更是高达0.55,相比现有的NA值为0.33的EUV光刻机而言,有明显的提升。全新一代光刻机的NA值提升,意味着光刻机精度更高,可以生产制造更小面积的芯片,甚至可达1nm。

光刻技术主要应用在微电子中。它一般是对半导体进行加工,需要一个有部分透光部分不透光的掩模板,通过曝光、显影、刻蚀等技术获得和掩模板一样的图形。先在处理过后的半导体上涂上光刻胶,然后盖上掩模板进行曝光;其中透光部分光刻胶的化学成分在曝光过程中发生了变化;之后进行显影,将发生化学变化的光刻胶腐蚀掉,裸露出半导体;之后对裸露出的半导体进行刻蚀,最后把光刻胶去掉就得到了想要的图形。光刻技术在微电子中占有很大的比重,比如微电子技术的进步是通过线宽来评价的,而线宽的获得跟光刻技术有很大的关系。光刻技术就是在需要刻蚀的表面涂抹光刻胶,干燥后把图形底片覆盖其上,有光源照射,受光部分即可用药水洗掉胶膜,没有胶膜的部分即可用浓酸浓碱腐蚀表面。腐蚀好以后再洗掉其余的光刻胶。现在为了得到细微的光刻线条使用紫外线甚至X射线作为光源。

光刻分辨率是指将硅片上两个邻近的特征图形区分开来的能力。光刻中的一个重要的性能指标指的是每个图形的分辨率。在先进的半导体集成电路制造中,为获得高集成度器件分辨率很关键。光刻分辨率对任何光学系统都是一个重要的参数,并且对光刻很关键,因为需要在硅片上制造出极小的器件尺寸。硅片上形成图形的实际尺寸就是特征尺寸,最小的特征尺寸即关键尺寸,对于关键尺寸来说,光刻分辨率很重要。光刻技术类似于照片的印相技术,光刻胶相当于相纸上的感光材料,光刻掩模相当于相片底片。光刻技术通过显影、定影、坚膜等步骤溶解掉光刻掩模上的一些区域,形成版形。伴随集成电路制造工艺的不断进步,线宽的不断缩小,半导体器件的面积正变得越来越小,半导体的布局已经从普通的单一功能分离器件,演变成整合高密度多功能的集成电路。由最初的IC(集成电路)随后到LSI(大规模集成电路)和VLSI(超大规模集成电路),直至今天的ULSI(特大规模集成电路),器件的面积进一步缩小,功能更为全面强大。由于半导体工艺研发的复杂性、长期性和高昂的成本等等不利因素的制约,如何在现有技术水平的基础上进一步提高器件的集成密度,缩小芯片的面积,在同一枚硅片上尽可能多的得到有效的芯片数,从而提高整体利益,将越来越受到芯片设计者和制造商的重视。这其中的主要手段是不断提升或采购先进的光刻设备,以求在光学上得到更高的分辨率表现以及提升光刻胶的化学表现。现针对这两个方面进行说明从光学方面来讲光的衍射是光通过不透明体边缘,穿过狭缝或从划有平行直线的表面反射时产生偏折并出现一些彼此平行的亮带和暗带的现象。半导体生产中使用的光刻技术主要基于上述原理当光线通过掩膜版时,由于受到掩膜版图形的影响,使光线发生偏折,根据掩膜版图形的尺寸大小从而产生数量不同的衍射级数,基本的计算工式P*Sinα=n*λ (公式1)P是图形的透明区域和不透明部分宽度的总和;α是衍射角度;λ是光刻机使用的波长;n即是衍射级数。根据数值孔径的分辨率的概念和计算公式NA=N*Sinα (公式2)R=K1*λ/NA (公式3)数值孔径NA(Numerical Aperture)是光刻机镜头能力的重要表征,数值越高其带来的分辨率R越高;N是光酸的浓度;K1是系数因子,与工艺的能力,设备的波长,数值孔径等的基本参数相关。当数值孔径为某个定值时通过公式2可以得到最大有效衍射角,由此带入公式1得到可以被镜头收集的衍射级数。收集的衍射级数越多,图形的逼真程度越高,由此得到的空间图像对比度也会大大提高。因此,不断提高数值孔径即是光学上提高分辨率的一条根本途径,但由于设备的制造成本不断激增,镜头的制备也难上加难,无疑未来这条路将变得十分坎坷、艰辛。


欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/dianzi/9166647.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-04-25
下一篇 2023-04-25

发表评论

登录后才能评论

评论列表(0条)

保存