前些天,我国本土半导体设备传来好消息,中微半导体设备(上海)有限公司自主研制的5nm等离子体刻蚀机经台积电验证,性能优良,将用于全球首条5nm制程生产线。刻蚀机是芯片制造的关键装备之一,中微突破关键核心技术,让“中国制造”跻身刻蚀机国际第一梯队。
近年来,我国大陆半导体设备企业一直在努力追赶国际先进脚步。在多种设备领域有一定突破,除了上述中微半导体的5nm等离子体刻蚀机之外,有越来越多的产品可应用于14nm、7nm制程。
但是,国内设备与国外先进设备相比仍有较大差距,主要表现在两方面:一是有一定竞争力的产品在领先制程上的差距;二是部分产品完全没有竞争能力或尚未布局,比如国内光刻机落后许多代际,仅能达到90nm的光刻要求,国内探针台也处于研发阶段,尚未实现销售收入。
那么,在国家的扶持下,经过这么多年的发展,我国本土半导体设备各个细分领域的发展情况如何呢?相关企业都有哪些?发展到了什么程度呢?下面就来梳理一下。
北方华创
北方华创由七星电子和北方微电子战略重组而成。七星甴子主营清洗机、氧化炉、 气体质量控制器(MFC)等半导体装备及精密甴子元器件等业务,此外七星甴子还是国内真空设备、 新能源锂甴装备重要供应商。北方微甴子主营刻蚀设备(Etch)、物理气相沉积设备(PVD)、化学气相沉积设备(CVD)三类设备。
2010 年 3 月,七星甴子在深交所上市。 2016 年 8 月,七星甴子与北方微甴子实现战略重组,成为中国规模最大、产品体系最丰富、涉及领域最广的高端半导体工艺设备供应商,开成功引迚国家集成甴路产业基金(大基金)等战略投资者,实现了产业与资本的融合。 公司实际控制人是北京甴控,隶属于国资委。
2017 年 2 月,七星甴子正式更名为北方华创 科技 集团股仹有限公司,完成了内部整合,推出全新品牉“北方华创”,开形成了半导体装备、真空装备、新能源锂甴装备和高精密甴子元器件四大业务板块加集团总部的“4+1”经营管理模式。
北方华创的半导体装备亊业群主要包括刻蚀机、 PVD、 CVD、氧化炉、扩散炉、清洗机及质量流量控制器(MFC)等 7 大类半导体设备及零部件,面向集成甴路、先进封装等 8 个应用领域,涵盖了半导体生产前段工艺制程中的除光刻机外的大部分兲键装备。 客户包括中芯国际、华力微甴子、长江存储等国内一线半导体制造企业,以及长甴 科技 、 晶斱 科技 、华天 科技 等半导体封装厂商。
重组之后,北方华创业绩快速增长。2017 年实现营业收入 22.23 亿元,同比增长37.01%,归母净利润 1.26 亿元,同比增长 35.21%。 根据公司 2018 年半年报业绩快报,2018 年上半年公司实现营业收入13.95 亿元,同比增长 33.44%, 归母净利润 1.19 亿元,同比增长 125.44%。 随着下游晶圆厂投资加速, 公司半导体设备等觃模持续扩张。
长川 科技
长川 科技 是国内集成电路封装测试、晶圆制造及芯片设计环节测试设备主要供应商。 半导体测试设备主要包括分选机、 测试机和探针台三大类。自2008年4月成立以来,该公司率先实现了半导体测试设备(分选机和测试机) 的国产化, 并获得国内外众多一流集成电路企业的使用和认可。
该公司于 2012 年 2 月承担并完成国家“十二五”规划重大专项“极大规模集成电路制造装备及成套工艺”中的高端封装设备与材料应用工程项目,并于 2015 年 3 月获得国家集成电路产业基金投资。
该公司的测试机和分选机在核心性能指标上已达到国内领先、接近国外先进水平,同时售价低于国外同类型号产品,具备较高的性价比优势。 公司产品已进入国内主流封测企业, 如天水华天、 长电 科技 、 杭州士兰微、 通富微电等。 2017 年,该公司对外积极开拓市场, 设立台湾办事处,拓展台湾市场。
2013~2017年,长川 科技 营收实现了由 4,341 万元到 1.80 亿元的跨越,复合增速达39.75%。 2017 年,归属母公司净利润由992万元增长至 5,025 万元, 复合增速达31.48%。
中微半导体
中微半导体成立于 2004 年,是一家微加工高端设备公司, 经营范围包括研发薄膜制造设备和等离子体刻蚀设备、大面积显示屏设备等。该公司管理层技术底蕴深厚,大多有任职于应用材料、LAM和英特尔等全球半导体一流企业的经验。
中微半导体先后承担并圆满完成 65-45 纳米、 32-22 纳米、22-14 纳米等三项等离子介质刻蚀设备产品研制和产业化。 公司自主研发的等离子体刻蚀设备 Primo D-RIE 可用于加工 64/45/28 纳米氧化硅、氮化硅等电介质材料,介质刻蚀设备 Primo AD-RIE 可用于 22nm 及以下芯片加工,均已进入国内先进产线。中微半导体的介质刻蚀机已经完成了5nm 的生产。
晶盛机电
晶盛机电是一家专业从事半导体、光伏设备研发及制造的高新技术企业,是国内技术领先的晶体硅生长设备供应商。该公司专注于拥有自主品牌的晶体硅生长设备及其控制系统的研发、制造和销售,先后开发出拥有完全自主知识产权的直拉式全自动晶体生长炉、铸锭多晶炉产品。
该公司立足于“提高光电转化效率、降低发电成本”的光伏技术路线,实现了硅晶体生长“全自动、高性能、高效率、低能耗”国内领先、国际先进的技术优势。全自动单晶炉系列产品和 JSH800 型气致冷多晶炉产品分别被四部委评为国家重点新产品。同时公司积极向光伏产业链装备进行延伸,2015 年成功开发并销售了新一代单晶棒切磨复合一体机、单晶硅棒截断机、多晶硅块研磨一体机、多晶硅块截断机等多种智能化装备,并布局高效光伏电池装备和组件装备的研发。
该公司的晶体生长设备特别是单晶硅生长炉销售形势较好,主要是单晶光伏的技术路线获得认可,随着下游厂商的扩产,单晶的渗透率也逐步提升,带来对单晶硅生长炉的需求增加,该类产品收入已经占营业收入的 81%。
该公司主营业务伴随国内光伏产业的上升发展,给主营业务收入和利润带来显着增长,近两年的增长率均在 80%以上,另外,其毛利率水平和净利率水平也基本维持稳定。
上海微电子
上海微电子装备有限公司成立于2002年,主要致力于大规模工业生产的投影光刻机研发、生产、销售与服务,该公司产品可广泛应用于IC制造与先进封装、MEMS、TSV/3D、TFT-OLED等制造领域。
该公司主要产品包括:
600扫描光刻机系列—前道IC制造
基于先进的扫描光刻机平台技术,提供覆盖前道IC制造90nm节点以上大规模生产所需,包含90nm、130nm和280nm等不同分辨率节点要求的ArF、KrF及i-line步进扫描投影光刻机。该系列光刻机可兼容200mm和300mm硅片。
500步进光刻机系列—后道IC、MEMS制造
基于先进的步进光刻机平台技术,提供覆盖后道IC封装、MEMS/NEMS制造的步进投影光刻机。该系列光刻机采用高功率汞灯的ghi线作为曝光光源,其先进的逐场调焦调平技术对薄胶和厚胶工艺,以及TSV-3D结构等具有良好的自动适应性,并通过采用具有专利的图像智能识别技术,无需专门设计特殊对准标记。该系列设备具有高分辨率、高套刻精度和高生产率等一系列优点,可满足用户对设备高性能、高可靠性、低使用成本(COO)的生产需求。
200光刻机系列—AM-OLED显示屏制造
200系列投影光刻机综合采用先进的步进光刻机平台技术和扫描光刻机平台技术,专用于新一代AM-OLED显示屏的TFT电路制造。该系列光刻机不仅可用于基板尺寸为200mm × 200mm的工艺研发线,也可用于基板尺寸为G2.5(370mm × 470mm)和G4.5(730mm × 920mm)的AM-OLED显示屏量产线。
硅片边缘曝光机系列——芯片级封装工艺应用
SMEE开发的硅片边缘曝光机提供了满足芯片级封装工艺中对硅片边缘进行去胶处理的能力,设备可按照客户要求配置边缘曝光宽度、硅片物料接口形式、曝光工位等不同形式。设备同时兼容150mm、200mm和300mm等三种不同规格的硅片,边缘曝光精度可到达0.1mm。设备配置了高功率光源,具有较高的硅片面照度,提高了设备产率。
至纯 科技
至纯 科技 成立于 2000 年, 主要为电子、生物医药及食品饮料等行业的先进制造业企业提供高纯工艺系统的整体解决方案, 产品为高纯工艺设备和以设备组成的高纯工艺系统,覆盖设计、加工制造、安装以及配套工程、检测、厂务托管、标定和维护保养等增值服务。
该公司在 2016年前产品约一半收入来自医药类行业,光伏、 LED 行业及半导体行业收入占比较小。 2016年以来,公司抓住半导体产业的发展机遇,逐步扩大其产品在半导体领域的销售占比, 2016和 2017 年来自半导体领域收入占公司营业收入比重分别为 50%和 57%,占据公司营业收入半壁江山。主攻半导体清洗设备。
该公司于 2015 年开始启动湿法工艺装备研发, 2016 年成立院士工作站, 2017 年成立独立的半导体湿法事业部至微半导体,目前已经形成了 UltronB200 和 Ultron B300 的槽式湿法清洗设备和 Ultron S200 和 Ultron S300 的单片式湿法清洗设备产品系列, 并取得 6 台的批量订单。
精测电子
武汉精测电子技术股份有限公司创立于 2006 年 4 月,并于 2016 年 11 月在创业板上市。公司主要从事平板显示检测系统的研发、生产与销售,在国内平板显示测试领域处于绝对领先地位, 主营产品包括:模组检测系统、面板检测系统、OLED 检测系统、AOI光学检测系统和平板显示自动化设备。近几年来,该公司积极对外投资,设立多家子公司,业务规模迅速扩张,进一步完善了产业布局。
该公司成立初期主要专注于基于电讯技术的信号检测,是国内较早开发出适用于液晶模组生产线的 3D 检测、基于 DP 接口的液晶模组生产线的检测和液晶模组生产线的 Wi-Fi 全无线检测产品的企业,目前该公司的 Module 制程检测系统的产品技术已处于行业领先水平。
2014 年,精测电子积极研发 AOI 光学检测系统和平板显示自动化设备,引进了宏濑光电和台湾光达关于 AOI 光学检测系统和平板显示自动化设备相关的专利等知识产权,使其在 Array制程和 Cell 制程的检测形成自有技术,初步形成了“光、机、电”技术一体化的优势。
精测电子2018年上半年财务报告显示,该公司收入主要来自 AOI 光学检测系统业务,占比 45.49%,毛利占比 41.94%;其次是模组检测系统业务,收入占比 23.33%,毛利占比 27.68%; OLED 检测系统和平面显示自动化设备收入占比分别为 14.29%和12.30%,毛利占比为 14.26%和 10.28%。
电子 科技 集团45所
中国电子 科技 集团公司第45研究所创立于1958年,2010年9月,中央机构编制委员会办公室批准45所第一名称更改为“北京半导体专用设备研究所”,第二名称仍保持“中国电子 科技 集团公司第四十五研究所”不变。
45所是国内专门从事军工电子元器件关键工艺设备技术、设备整机系统以及设备应用工艺研究开发和生产制造的国家重点军工科研生产单位。
45所以光学细微加工和精密机械与系统自动化为专业方向,以机器视觉技术、运动控制技术、精密运动工作台与物料传输系统技术、精密零部件设计优化与高效制造技术、设备应用工艺研究与物化技术、整机系统集成技术等六大共性关键技术为支撑,围绕集成电路制造设备、半导体照明器件制造设备、光伏电池制造设备、光电组件制造和系统集成与服务等五个重点技术领域,开发出了电子材料加工设备、芯片制造设备、光/声/电检测设备、化学处理设备、先进封装设备、电子图形印刷设备、晶体元器件和光伏电池等八大类工艺设备和产品,服务于集成电路、光电元器件与组件、半导体照明和太阳能光伏电池四大行业.
上海睿励
睿励科学仪器(上海)有限公司是于2005年创建的合资公司,致力于研发、生产和销售具有自主知识产权的集成电路生产制造工艺装备产业中的工艺检测设备。主要生产用于65/28/14nm制程工艺控制的膜厚测量设备。
沈阳芯源
沈阳芯源微电子设备有限公司成立于2002年,由中科院沈阳自动化研究所引进国外先进技术投资创建。
芯源公司自主开发的单片匀胶机、显影机、喷胶机、去胶机、清洗机、湿法刻蚀机等设备广泛应用于半导体、先进封装、MEMS、LED等领域。
1.LED领域匀胶显影机:应用于LED芯片制造、PSS(图形化衬底)、MEMS、HCPV(高聚光型太阳能电池)、Waveguide(光波导)工艺的匀胶显影等工艺制程。
2.高端封装全自动涂胶显影机:广泛应用于先进封装BGA、Flip-Chip、WSP、CSP制程的高黏度PR、PI、Epoxy的涂敷、显影工艺制程。
3.高端封装全自动喷雾式涂胶机: 广泛应用于TSV、MEMS、WLP等工艺制程。
4.单片湿法刻蚀机/去胶机/清洗机:广泛应用于先进封装BGA、Flip-Chip、WSP、CSP制程的刻蚀、去胶、清洗工艺制程。
5.前道堆叠式全自动涂胶显影机:应用于90nm光刻工艺、BARC涂覆、SOC、SOD、SOG等工艺制程。
盛美半导体
盛美半导体(ACM Research)是国内半导体清洗设备主要供应商,于1998年在美国硅谷成立,主要研发电抛光技术,2006 年成立上海子公司,专注于半导体清洗设备。2017年11月4日公司在美国纳斯达克上市。2017年公司营业收入3650万美元,同比增长33.2%,其中90%以上的营业收入来自于半导体清洗设备。2017 年研发投入占营业收入比例为14.1%。
由于声波清洗可能会造成晶片损伤,行业公司大多转向研发其他技术,盛美半导体另辟蹊径研发出空间交变相移兆声波清洗(SAPS)和时序能激气泡震荡兆声波清洗(TEBO)两项专利技术,可以实现无伤清洗。公司的清洗设备目前已经进入 SK 海力士、长江存储和上海华力等先进产线。
天津华海清科
天津华海清科机电 科技 有限公司成立于2013年,是天津市政府与清华大学践行“京津冀一体化”国家战略,为推动我国化学机械抛光(CMP)技术和设备产业化成立的高 科技 企业。
华海清科主要从事CMP设备和工艺及配套耗材的研发、生产、销售与服务,核心团队成员来自清华大学摩擦学国家重点实验室及业内专业人才,产品可广泛应用于极大规模集成电路制造、封装、微机电系统制造、晶圆平坦化、基片制造等领域。
中电科装备
中电科电子装备集团有限公司成立于2013年,是在中国电子 科技 集团公司2所、45所、48所基础上组建成立的二级成员单位,属中国电子 科技 集团公司独资公司,注册资金21亿元,该公司是我国以集成电路制造装备、新型平板显示装备、光伏新能源装备以及太阳能光伏产业为主的科研生产骨干单位,具备集成电路局部成套和系统集成能力以及光伏太阳能产业链整线交钥匙能力。
多年来,利用自身雄厚的科研技术和人才优势,形成了以光刻机、平坦化装备(CMP)、离子注入机、电化学沉积设备(ECD)等为代表的微电子工艺设备研究开发与生产制造体系,涵盖材料加工、芯片制造、先进封装和测试检测等多个领域;通过了ISO9001、GJB9001A、UL、CE、TüV、NRE等质量管理体系与国际认证。
沈阳拓荆
沈阳拓荆 科技 有限公司成立于2010年4月,是由海外专家团队和中科院所属企业共同发起成立的国家高新技术企业。拓荆公司致力于研究和生产薄膜设备,两次承担国家 科技 重大专项。2016年、2017年连续两年获评“中国半导体设备五强企业”。
该公司拥有12英寸PECVD(等离子体化学气相沉积设备)、ALD(原子层薄膜沉积设备)、3D NAND PECVD(三维结构闪存专用PECVD设备)三个完整系列产品,技术指标达到国际先进水平。产品广泛应用于集成电路前道和后道、TSV封装、光波导、LED、3D-NAND闪存、OLED显示等高端技术领域。
华海清科
天津华海清科机电 科技 有限公司成立于2013年,是天津市政府与清华大学践行“京津冀一体化”国家战略,为推动我国化学机械抛光(CMP)技术和设备产业化成立的高 科技 企业。
华海清科主要从事CMP设备和工艺及配套耗材的研发、生产、销售与服务,核心团队成员来自清华大学摩擦学国家重点实验室及业内专业人才,产品可广泛应用于极大规模集成电路制造、封装、微机电系统制造、晶圆平坦化、基片制造等领域。
以上就是我国大陆地区的主要半导体设备生产企业。
随着我国半导体产业的快速发展,对半导体设备的需求量越来越大,而本土半导体设备企业面临着供给与需求错配的情况。一方面,国内的半导体设备需求随着下游产线的扩张而迅速增加,大陆的半导体设备需求占全球半导体设备需求的比重较高;但另一方面,本土的设备供给存在着水平较为落后,国产化率不高的情况。
针对这一情形,在国家的大力支持下,国内设备企业需要积极布局,以在各细分设备领域实现突破。
液晶显示技术 LCD 基本上是目前人类最主流的人机交流界面,尽管新兴技术频出,但其实如最新的 Mini LED 等技术其实都还是属于 LCD 范畴,实务上又要怎么区别,与旧有技术又有何不同?
液晶,指的是液态晶体(Liquid Crystal,LC),是一种物理相态,因其具有特殊的理化与光电特性,被广泛应用在显示技术且大大的改善了装置的轻薄程度,成为当代最普遍的显示技术。所以基本上目前被广泛谈论的各种液晶屏幕都在 LCD(Liquid-crystal Display)的范畴内。只不过目前市场上所指的 LCD,已代指主动矩阵式 TFT-LCD 技术,其他如被动矩阵式 STN LCD 技术都已被淘汰。
TFT-LCD 全称为薄膜晶体管液晶显示器(Thin film transistor-liquid crystal Display)是指液晶显示器上的每一个液晶像素点都是由集成在后的薄膜晶体管来驱动,并独立控制,不仅提高了反应速度,还可精确控制色阶。这是目前消费产品的基础,其不仅技术已相当成熟,且成本低廉。
液晶的种类
LCD 面板结构 (Source:I, Wasami007 / CC BY-SA)
TFT-LCD 主要工作原理,是由两片玻璃基板中间夹着一层液晶,上层玻璃基板是彩色滤光片、而下层玻璃则镶嵌着晶体管,当电流通过晶体管所产生的电场变化,将造成液晶分子偏转,并改变光线,再利用电压来决定像素明暗,且每个像素各包含红绿蓝三原色,来构成影像输出。虽然其电路布置方式很类似于 DRAM,只不过是建构在玻璃上,但其制程主要是造出非晶硅层或多晶硅层,而不是需要磊晶的高级晶体管。
在此技术之上,发展出了质量及成本差异化的产品。目前主要分为三种,TN、VA 及IPS面板,差异主要在于液晶层的不同。其中扭曲向列液晶(Twisted Nematic liquid crystal),又称 TN 液晶是成本最低的 LCD 面板类型,不过基本上其像素反应已经相当快,足以满足大部分的需求。且如三星还更进一步发展了反应更快、色彩更饱满的 B-TN 技术。
左图为未通电状态,光线能通过 TN 液晶,右图施加电压后,光线无法通过
(Source:illustration by courtesy of M. Schadt.(based on copyright claims). / CC BY-SA)
不过 TN 液晶的可视角是很严重的问题,到了 VA 液晶面板才算是进一步的解决方案,就算不用特殊补偿膜,仍能获得近 170 ° 的可视角。这是由于把 TN 液晶,改为使用垂直排列液晶(Vertical Alignment liquid crystal),且可以达到更高的对比度,但比起 TN 反应较慢,成本也更高,属于中阶产品。
而目前最高档的 TFT-LCD 是 IPS ,采用横向电场效应显示技术(In-Plane-Switching)能有效改善视角差及各种传统 TN 面板问题,且可视角度极佳,耗电也比 VA 面板更低,且非常适合应用在触控式屏幕。苹果公司早期的 iPhone 和 iPad 等产品都是使用 IPS 液晶,但当然也更昂贵。
由于 TFT-LCD 制程的热络发展,在新兴 LED 技术出现前,基本上在谈论面板时,都主要讨论的是这三大类。当然还有其他如三星的 PLS、PVA 面板及富士通的 MVA 面板等新品种,不过基本上就是在广视角的基础上维持性能,并尽力压低成本的结果。至此,传统的窄视角 TN 面板就逐渐被淘汰。
成败皆在 Open Cell
虽然目前已陷入红海,但面板也曾经是台湾地区红极一时的产业。TFT-LCD 面板零组件主要包括玻璃基板、背光模块、偏光板、彩色滤光片以及光学膜等相关材料。台湾地区厂商在整体供应链环节大都有涉猎,但比较知名的友达及群创等大厂,主要是制作 Open Cell 及模块组装。
TFT-LCD 的 Open Cell 制程一般分为前、中、后三段,前段主要是指 TFT 玻璃的制作,其制程与半导体制程类似,都是透过涂布跟蚀刻来令薄膜晶体管镶嵌在基板玻璃之上。中段则是将 TFT 玻璃与彩色滤光片贴合,并且加上偏光板,而后段就是把驱动 IC 和印刷电路板压合,就完成所谓的 Open Cell,但这其实只算半成品。
与半导体类似的前段 Array,TFT 玻璃制程。(Source:群创)
值得一提的是,虽然还要加上背光板才能使用,但不少终端厂商会选择直接购买 Open Cell,来实现面板封装与产品封装的一体化,让设计更有d性。尤其是有全球过半产能的大陆电视组装厂,相当盛行 BMS 模式(Backlight Module System),早在数年前,如友达及群创等面板厂商就开始转向为出货 Open Cell。虽然直接出货 Open Cell 的确会比模块利润更高,替面板厂省去了不少物料管理等成本。但必须注意的是,这也是两面刃。
若面板厂只专注在生产半成品,但由于其高度标准化,也就难以针对不同功能的需求来发展产品组合,容易造成供过于求的局面,最终失去对市场的话语权。所以也有研究认为,就是因为面板厂转采 Open Cell 的出货方式反而导致价格迅速下滑,长期来讲对资本规模庞大的面板业不利,也是大陆厂商以价格补贴就轻易突破老牌大厂的原因之一。
当然显示技术也不只LCD一种,近年来有机发光二极管(Organic Light-Emitting Diode,OLED)显示技术,虽然互有优缺点,但被认为是新主流。
基本上LCD与OLED的工作原理就已完全不同,OLED拥有自发光的特性,不需要背光板及彩色滤光片,结构更加轻薄,所以受到业界青睐。OLED跟LED一样,同样是利用传导带以及价电带之间电子电洞的复合,将能量以光的形式激发出来,只不过在使用的材料上,是用高分子有机薄膜,不需要复杂的磊晶制程,且发光更有效率。
以上诸多特性使OLED在业界深受期望,且目前也已被广泛应用。自2018年,苹果公司的iPhone产品开始采用后,OLED屏幕逐渐兴起。与LCD相较,OLED在可视角、对比、色域及亮度上都有相当大的优势,但由于成本及技术问题,在大尺寸产品上,OLED仍难以与LCD竞争。
OLED与LCD的差别
OLED的基本结构是在铟锡氧化物(ITO)玻璃上制作一层有机材料发光层,并在发光层上再覆盖一层低功函数的金属电极。透过外界电压的驱动下,正极电洞与阴极电子便会在发光层中结合并释放出光子,因材料特性不同而产生红、绿和蓝三原色,来构成基本色彩。
OLED与LCD最大的差异在于自发光。(Source:科技新报)
且为增强电子和空穴的注入和传输能力,通常还会在ITO与发光层之间再增加一层空穴传输层,在发光层与金属电极之间增加一层电子传输层,从而提高发光性能。事实上,现在常被提及的主动式矩阵OLED(AM-OLED)背后也同样是薄膜晶体管,与TFT-LCD一样,依晶体管接到的指令来发光。还有一点差别在于AM-OLED常用圆偏光片,来降低显示干扰,而非线性偏光片。
当然也有被动式矩阵OLED(PM-OLED),但有明显的缺点。OLED屏幕最令人诟病的就是其像素点受限于材料,有明显的寿命限制,用久了就会产生色衰、烙印等问题。而PM-OLED在高脉冲电流下 *** 作,使像素寿命更短,且分辨率也有限,只适合用在小尺寸产品上,所以虽然成本更低廉,但不受青睐,基本上市场对于AM-OLED接受度更高。
OLED在制程流程一样分前中后段,与LCD最大的差异在于Cell制程,主要是采用真空蒸镀法。在高度真空的条件下,以加热升华的方式,将有机材料气化并透过精密金属屏蔽(Fine Metal Mask,FMM)使其碰撞在基板表面,并凝结成RGB像素点。由于用此法生成的材料纯度高,令器件寿命更长,所以成为主流。但也因这样讲求高精密度的制程,令原本构造简单的OLED面板,成本反而降不下来。
OLED面板主要制程。(Source:科技新报)
半导体与面板业
先回过头来讲,面板业与半导体业的相似性。无论是制程或是大规模资本支出,都令人想把面板业贴上半导体业的标签。然而实际上,两者还是有很大的差别,重点在于产品「标准化」的程度,因应不同功能,半导体芯片设计有成千上万种,但对于面板而言,相对就没有那么多的差异性,在这样的情境下,产能跟成本控制就会变成主要追求。就像前文所述,面板业走向Open Cell就是如此。
先不论好坏,亦即若要有竞争力,垂直整合(IDM)或许会是更适合面板业的模式,且可能将走向大者恒大。因为所谓的产能要建构出来也并没有那么容易,如OLED蒸镀机等关键设备难以取得,也成为了门槛。导致目前OLED主要是被韩厂垄断,光三星就占有近9成的市场。
所以目前业界新进正积极追求成本更低的喷墨印刷制程。近期,国内大厂如京东方开始被认为有挑战三星的潜力,重点就在于有望实现喷墨印刷OLED的量产。OLED屏幕目前是小型智能移动装置的首选,在性能表现上更胜LCD一筹,尤其柔性基板在新兴折叠应用上不可或缺。不过要等实现喷墨印刷制程后,OLED才有可能在大尺寸上也彻底打败LCD成为真正的市场主流。
喷墨印刷难点
若用蒸镀制程,大尺寸面板的曲翘及精密金属屏蔽等问题容易造成不良,但喷墨印刷就可克服这些困难,且成本更低,其生产不需要真空环境,也不用FMM,材料利用率也更高,更适合大面积生产。但这并不代表就更容易,喷墨印刷主要是使用溶剂将OLED有机材料融化,并直接喷印在基板表面形成像素,但要制成可用的阴极墨水及大面积均匀成膜,都是技术难点。
RGB有机喷墨印刷技术。(Source:科技新报)
还有为了生产足以媲美蒸镀法的高分辨率面板,其喷墨头的定位及喷墨液滴体积等精准控制都是挑战,尤其同时还要兼顾印刷错误及生产速度。这不只是需要能进行非常精密 *** 作的机械平台,还要优化墨水的化学组成,才能更好的控制蒸发及成膜的过程,甚至对基板的结构设计都有要求,才能让墨水在其表面的铺展润湿有完美表现,这些都需要设备及工艺等达到一定门槛。
但无论如何,喷墨印刷制程会是国内厂商实现弯道超车的机会,以绕过韩厂在设备和材料上提前设下的壁垒,由国内厂商如华星及天马微等,合作成立的广东聚华,就是为了更好的实现这项技术。当然三星也不会眼睁睁的看着竞争者后来追上,近年来也积极的投入喷墨印刷制程及专利布局,若真能抢先一步应用在其QD-OLED面板上,三星在市场上的地位恐怕会更加不可动摇。
近年来蔚为风潮的量子点显示技术,其实与OLED及LCD本质上没什么关系,还有MiniLED和Micro LED也不只是尺寸的差别。最后就来简单的介绍一下,这些新兴技术到底怎么区分。
所谓量子点,其实是一种半导体纳米结构,可以把激子(Exciton)从三个空间方向上束缚住,且发光频率会随着这种半导体尺寸的改变而变化,意即通过调节这种纳米半导体的尺寸,就可控制其颜色,且具有很高的光稳定性。
基于这些特性,理论上这种荧光材料甚至可以制造出接近自然光的连续光谱效果,色域非常广,且寿命更长,有成为终极显示技术的潜能。简单来讲,这是一种能够优化光源的技术,且不会有OLED的烙印问题。QD技术最早还是应用在LCD等非自发光显示器上,而后才被研究如何应用在OLED上。目前两者通常会以QLED及QD-OLED来区分。
发展积极,量产难言
QLED虽然同样如LCD需依靠背光源,也承袭了其缺点,但透过量子点薄膜(QDEF)能发出更纯的色彩。而三星近年来积极发展的QD-OLED则是更进一步,直接用蓝色OLED光源,激发不同粒径大小的量子点转换成红光和绿光。不仅性能提升,成本「理论」上也将低于原有的WOLED技术,加上喷墨印刷制程,有望使其产品能继续称霸市场。不过目前来看三星理想中的QD-OLED技术,由于光转换率仍偏低,虽然近期不断有乐观消息传出,但总体上商业化准备还不足。
理想中的真正量子点显示技术是最右侧的电致发光(Electroluminescence,EL),已不再需要进行色转换,目前还未有明确命名。(Source:Samsung Display)
事实上,要制造量子点并不容易,材料结构至少要缩到100纳米以下,所以对制程要求更高,且实际上能采用的材料仍是有限,虽然在2006年首个量子点技术显示器就已问世,但量子点材料往往容易受热影响,很难使用真空蒸镀量产,只能依赖喷墨印刷的进展。所以目前市面上所见的量子点电视,基本上是与LCD雷同的QLED,而非QD-OLED。如今三星较为成熟的也是无机材料喷墨印刷术。
而大陆方面也有不小的进展,在CES 2019展上,华星光电也同样发布了一种混合OLED与QLED的技术H-QLED,且采用喷墨印刷,而在CES 2020,更展出了柔性OLED喷墨印刷面板,近日还注资了日本JOLED,可望取得相关技术,不过这些产品都还未有量产消息。
其实与三星的技术路线图比较,H-QLED 仍是与 QD-OLED 相似的技术。(Source:科技新报)
集邦调研分析师表示,新兴显示技术瓶颈克服不易,QD-OLED最快可能也要2021年才会问世,就算是目前大陆已开始铺陈产线的OLED喷墨印刷技术仍有ppi偏低的问题,真正成熟要等2022年以后才比较有望。
MiniLED到Micro LED的暧昧
不过目前讨论度最高的,可能还不是量子点技术,而是同样被视为高阶显示技术的Micro LED与MiniLED。Micro LED是指「微发光二极管」,而MiniLED正式名称为「次毫米发光二极管」,两者尺寸基本上以100微米为界,约0.1毫米。不过如Micro LED已有3微米以下的原型,且技术难点也并不在于生产微缩晶粒。
其实最早也没有Mini及Micro之分,只是厂商为了与竞争对手做出差异化,所以导致越来越多定义,甚至近年来还有Nano LED的说法,但Micro LED已被视为是终极技术了,真到了纳米级反而难发光。不过较值得一提的是,RGB MiniLED就不只是做为背光,而是直接用来显示,不过尽管宽色域及鲜艳度等性能直追OLED,但成本仍相当惊人,基本上还是很利基。
三大显示技术的结构比较。(Source:科技新报)
整体而言,MiniLED仍被视为是Micro LED的过渡,MiniLED大多用在传统LCD结构,微缩的是背光LED。而Micro LED则致力于直接封装发光元件,能做到单独驱动无机自发光,甚至性能更胜OLED,被业界誉为新蓝海。虽然制程简化,但技术更困难,尤其是巨量转移(Mass Transfer)技术更将直接影响未来MiniLED的设计周期及Micro LED的量产契机。
巨量转移技术的概念流程。(Source:科技新报)
所以如台厂更积极的在发展MiniLED,而打算退出LCD市场的三星就直接将目标放在Micro LED上。简单的说,无论是Mini或Micro LED技术与之前讨论的最大不同主要在于后段制程,从巨量转移、封装测试,甚至到维修都是很大的挑战。且如今随着技术进步MiniLED尺寸的定义可能还会越来越小,未来50微米以上可能都还是被称做MiniLED。
最后值得一提的是,目前台湾地区厂商所称的MiniLED,与大陆常讲的MiniLED显示,概念上并不太一样。台厂所指,的确是微缩晶粒尺寸,而大陆就更突显在封装方式上,若是MiniLED背光模块,可用更密集的芯片排布来做成超薄光源。而放在自发光显示,MiniLED也能做出更小的点间距封装,两者产品有一定的差异化。
来源:TechNews
▽阅读更多Mini LED最新资讯
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)