nio2是什么半导体

nio2是什么半导体,第1张

nio2为p型半导体。氧化物半导体材料的平衡组成因氧的压力改变而改变,氧原子浓度决定其导电的类型。由于金属和氧之间的负电性差别较大,化学键离子性成分较强,破坏这样一个离子键要比共价键容易,使它含有的点缺陷浓度较大,所以化学计量比偏离对材料的电学性质影响也大。如化学计量比偏离缺氧时(或金属过剩时),则此氧化物半导体材料即呈现n型,此时氧空位或间隙金属离子形成施主能级而提供电子,属于此类半导体材料的有ZnO、CdO、TiO2、Al2O3、SnO等。

P型半导体,也称为空穴型半导体。P型半导体即空穴浓度远大于自由电子浓度的杂质半导体。1特点半导体中有两种载流子:导带中的电子和价带中的空穴。 如果某一类型半导体的导电性主要依靠价带中的空穴,则该类型的半导体就称为P型半导体。 “P”表示正电的意思,取自英文Positive的第一个字母。在这类半导体中,参与导电的 (即电荷载体) 主要是带正电的空穴,这些空穴来自半导体中的受主。因此凡掺有受主杂质或受主数量多于施主的半导体都是p型半导体。例如,含有适量三价元素硼、铟、镓等的锗或硅等半导体就是P型半导体。[由于P型半导体中正电荷量与负电荷量相等,故P型半导体呈电中性。空穴主要由杂质原子提供,自由电子由热激发形成。掺入的杂质越多,多子(空穴)的浓度就越高,导电性能就越强。2形成原理要产生较多的空穴浓度就需依赖掺杂或缺陷。在纯净的硅晶体中掺入三价元素(如硼),使之取代晶格中硅原子的位置,就形成P型半导体。对于Ⅳ族元素,半导体(锗、硅等)需进行Ⅲ族元素的掺杂对于Ⅲ-Ⅴ族化合物半导体(如砷化镓),常用掺杂Ⅱ族元素来提供所需的空穴浓度在离子晶体型氧化物半导体中,化学配比的微量偏移可造成大量电载荷流子,氧量偏多时形成的缺陷可提供空穴,Cu2O、NiO、VO2等均是该类型的P型半导体,且当它们在氧压中加热后,空穴浓度将随之增加.上述能给半导体提供空穴的掺杂原子或缺陷,均称受主。

主要是有许多易燃易爆的气体,常见易燃易爆气体有氢、一氧化碳、甲烷、丙烷、乙烯、乙烷、乙炔等烃类,还有硫化氢,所以气体传感器要求有防爆功能。

原理:

半导气体传感器

(1 ) SnO2半导体是典型的表面型气敏元件,其传感原理是SnO2为n 型半导体材料。当施加电压时,半导体材科温度升高,被吸附的氧接受了半导体中的电子形成了O2或O2原性气体H2、CO、CH4存在时,使半导体表面电阻下降,电导上升,电导变化与气体浓度成比倒。NiO为p型半导体,氧化性气体使电导下降,对O2敏感。ZnO半导体传感器也属于此种类型。

半导体气体传感器

a. 电导型的传感器元件分为表面敏感型和容积控制型,表面敏感型传感材料为SnO2+Pd 、ZnO十Pt 、AgO、V 205 、金属酞青、Pt —SnO2。 表面敏感型气体传感器可检测气体为各种可燃性气体C0、NO2、 氟利昂。传感材料Pt —SnO2 的气体传感器可检测气体为可燃性气体CO、H2、CH4 。

b. 容积控制型传感材料为Fe2O8、la1-SSrxCOO8 和TiO2、CoO-MgO —SnO2体传感器可检测气体为各种可燃性气体CO、NO2 氟利昂。。传感材料Pt —SnO2

容积控制型半导体气体传感器可检测气体为液化石油气、酒精、空燃比控制、燃烧炉气尾气。

( 2) 容积控制型的是晶格缺陷变化导致电导率变化,电导变化与气体浓度成比例关系。

Fe2O8、TiO2属于此种,对可燃性气体敏感。

(3) 热线性传感器,是利用热导率变化的半导体传感器,又称热线性半导体传感器,是在Pt 丝线圈上涂敷SnO2层,Pt丝除起加热作用外,还有检测温度变化的功能。施加电压半导体变热,表面吸氧,使自由电子浓度下降,可燃性气体存在时,由于燃烧耗掉氧自由电子浓度增大,导热率随自由电子浓度增加而增大,散热率相应增高,使Pt 丝温度下降,阻值减小,P t丝阻值变化与气体浓度为线性关系。

这种传感器体积小、稳定、抗毒,可检测低浓度气体,在可燃气体检测中有重要作用。

( 4) 非电导型的FET场效应晶体管气体传感器,Pd —FET.场效应晶体管传感器,利用Pd 吸收H z 并扩散达到半导体Si 和Pd的界面,减少Pd 的功函,这种对H2、CO敏感。非电导型FET场效应晶体管气体传感器体积小,便于集成化,多功能,是具有发展前途的气体传感器。


欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/dianzi/9167933.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-04-25
下一篇 2023-04-25

发表评论

登录后才能评论

评论列表(0条)

保存