半导体生物活体指纹识别技术就是半导体电容式的指纹头,主要是避免假指纹膜开锁,同时可以快速高效的识别正确的指纹,耗电量低,一般现在市面上应用的比较多的都是半导体指纹识别技术。
半导体指纹锁
生物识别技术是人类身份识别的最重要,最精确的识别方法。经科学实践或证明应用于科学、军事和民事等领域的生物识别方式有:指纹、掌纹、虹膜、声音、笔迹、脚步、面部及DNA检测等几种人类自带的识别方法,人们统称为生物识别。在现有生物识别方式中,指纹以其小巧、方便、精确,检测快速而被广泛应用。指纹识别是所有生物识别方式中成本最低,效率最高,使用最简单的一种方法。在民用产品中,配套产业群也是最为集中的。
电容传感器根据指纹的嵴和峪与半导体电容感应颗粒形成的电容值大小不同,来判断什么位置是嵴什么位置是峪,其工作过程是通过对每个像素点上的电容感应颗粒预先充电到某一参考电压,当手指接触到半导体电容指纹表现上时,因为嵴是凸起的峪是凹下,根据电容值与距离的关系,会在嵴和峪的地方形成不同的电容值,然后利用放电电流进行放电,因为嵴和峪对应的电容值不同,所以其放电的速度也不同,嵴下的像素(电容量高)放电较慢,而处于峪下的像素(电容量低)放电较快,根据放电率的不同,可以探测到嵴和峪的位置,从而形成指纹图像数据。 光学设备多采用人工调整改善图像质量不同,电容传感器采用自动控制技术调节指纹图像像素以及指纹局部范围敏感程度,在不同环境下结合反馈信息生成高质量图像,由于提供了局部调整能力,即使对比度差的图像(如手指压得较轻的区域)也能被有效检测到,并在捕捉瞬间为这些像素提高灵敏度,生成高质量指纹图像。
参考资料
半导体指纹锁.搜狗百科[引用时间2017-12-29]
1、到底光学还是半导体的指纹识别技术好: ①、光学指纹采集技术是最古老也是目前应用最广泛的指纹采集技术,光学指纹采集设备始于1971年,其原理是光的全反射(FTIR)。光线照到压有指纹的玻璃表面,反射光线由CCD去获得。光线经玻璃照射到谷的地方后在玻璃与空气的界面发生全反射,光线被反射到CCD,而射向脊的光线不发生全反射,而是被脊与玻璃的接触面吸收或者漫反射到别的地方,这样就在CCD上形成了清晰的指纹图像。 光学采集设备有着许多优势:它经历了长时间实际应用的考验,能承受一定程度温度变化,稳定性很好,并能提供分辨率达500dpi以上的图像,同时指纹识别的灵敏度非常的高,不用1秒,在加上指纹采集仪一般采用钢化玻璃,一定程度上可以很好的保护指纹采集仪,使用寿命非常的长。指纹识别的温度范围零下20度到85度之间鉴于此诸多的特点,逐渐成为市场上主流的指纹采集技术 光学指纹识别 ②、半导体指纹取像的原理是:这类传感器,无论是电容式或是电感式,其原理类似,在一块集成有成千上万半导体器件的“平板”上,手指贴在其上与其构成了电容(电感)的另一面,由于手指平面凸凹不平,凸点处和凹点处接触平板的实际距离大小就不一样,形成的电容/电感数值也就不一样,设备根据这个原理将采集到的不同的数值汇总,就完成了指纹的采集。 它是由电容阵列构成的,内部大约包含1万只微型化的电容器,当用户将手指放在正面时,皮肤就组成了电容阵列的一个极板,电容阵列的背面是绝缘极板。由于不同区域指纹的脊和谷之间的距离也不相等,使每个单元的电容量随之而变,由此可获得指纹图像。 半导体指纹识别 半导体与光学指纹识别的优缺点比较: 半导体指纹传感器具有体积小、识别率高等优点,这些特有的优点吸引了Sony, Infineon等知名公司,并开发出各具特色的产品。当然,作为极具潜力、代表未来发展方向的指纹传感器也存在一定局限性,表现为易受静电影响,严重时,传感器可能采集不到图像,甚至本身也会被损坏手指汗液盐分或其他污物,以及手指磨损等均会造成图像采集困难, 表面耐刮伤能力差些,其耐磨性亦不及玻璃大面积制造成本较高,故取像区域较小传感器稳定性,特别是次最优性能等方面有待进一步验证。但半导体指纹传感器识别冬天干手指比光学的好,随着技术的改良及附助功能的配合笔者相信未来半导体指纹传感器应用会更广。 光学指纹识别缺点是体积相对于半导体的体积要大,冬天干欢迎分享,转载请注明来源:内存溢出
评论列表(0条)