基于二维纳米线的光电器件

基于二维纳米线的光电器件,第1张

近日,来自澳大利亚墨尔本大学的研究人员在Nanophotonics上以 Nanowires for 2D material-based photonic and optoelectronic devices 为题发表综述文章,系统综述了近年来各种纳米线在光电子学和光电子学中的应用,以及纳米线与二维材料的结合。这篇综述文章介绍了纳米线作为谐振器或/和波导,以提高光子集成电路中用于光增强和引导的二维材料的性能。此外,本文还介绍了在光电子领域研究的纳米线和二维材料的混合。本文综述了纳米线与二维材料在光电子学和光电子学中的杂交,并对未来的研究进行了展望。

图1. 二维材料和纳米线耦合的示意图

图源:Advanced Materials 33, 2101589 (2021).

几十年来,光与物质相互作用的研究越来越受欢迎。最近的重点是提高光与物质相互作用的强度,以实现紧凑的集成光子电路、高效的光子器件和多功能光电子系统。二维材料是现代科学中研究最活跃的材料之一。使用二维材料进行研究有很多优点。例如,二维材料提供了良好的机械性能,例如高度可弯曲和可拉伸,而不会造成损坏。此外,通过简单地使用胶带从大块晶体中剥离二维材料,可以轻松创建原子级光滑、单层或几层样品,这增加了实验室研究中二维材料的使用。通过剥离方法,二维材料可以转移或堆叠到任何材料上,而无需考虑晶格失配问题。到目前为止,研究人员已经确定了一个二维材料库,其特性从金属到绝缘体不等,这些材料有时表现出独特的特性,如高导电性、高非线性或依赖谷值的电/光响应。

纳米线与二维材料的杂交使二维材料能够更好地作为光子和电子器件发挥作用。纳米线可以由金属、半导体或绝缘体制成。金属纳米线用途广泛,因为它们既可以用作电极,也可以用作光子元件。银因其高透射率、低电阻和高柔韧性而经常被用作电极材料。通过加入MXene、石墨烯或氧化石墨烯等二维材料,可以解决阻碍其实际使用的一些瓶颈问题。例如,二维导电层连接纳米线并使表面光滑,从而降低电阻。此外,二维绝缘材料保护金属纳米线免受氧化。这些异质结构可以是图1所示的各种配置。除电极外,金属纳米线还起到波导、开放纳米腔和控制发光性能的作用。随着半导体制造技术的进步,半导体纳米线被广泛应用,并作为集成光子电路的平台发挥着重要作用。半导体纳米线的一个显著优势是,它与互补金属氧化物半导体(CMOS)技术兼容,同时还提供了先进的电气和光学功能。当这些纳米线以核壳或纳米线的形式与单层结构上的二维材料结合时,预计会产生协同效应。

图2. 将金属纳米线与二维材料结合用于柔性透明电极

图源:Advanced Materials 33, 2101589 (2021).

柔性和透明电极适用于各种应用,并有望在光电子学中广泛使用。这种电极已用于柔性有机发光二极管(Folders)、太阳能电池和许多其他光电应用。金属纳米线因其高透射率和低片电阻而对柔性透明电极(FTE)的开发特别有吸引力。传统上,氧化铟锡(ITO)是一种广泛采用的柔性透明电极材料。ITO具有高导电性,同时在可见光波长下透明。然而,使用ITO有几个缺点,包括机械稳定性差,弯曲基板时由于裂纹导致电阻增加。此外,铟是地壳中稀缺的原材料,因此需要使用替代材料。金属纳米线因其优异的光学和电学性能而成为很有前途的候选者。它们展示了诱人的特性,有望在商业应用中取代ITO。这是因为纳米结构增加了d性,同时保持了良好的导电性和光学透明度,因此它们对弯曲和折叠裂纹具有d性。

然而,金属纳米线仍然存在一些固有的缺点,包括表面粗糙度高,与基底的附着力低,纳米线界面之间的不连续结构,以及快速降解。这些问题可以通过添加额外的材料来克服,即创建一个混合系统。这些混合系统由二维材料组成,其特性适用于克服这些问题。例如,MXene是一种二维材料,由过渡金属碳化物、氮化物和碳氮化物组成,经常用于缓解问题。MXene因其高导电性和大表面积等特点,在传感器和透明电极领域被广泛 探索 。石墨烯由于其独特的电学和光学性质,也是这方面很有前途的二维材料之一。

图3. 纳米线与二维材料耦合以增强光与物质相互作用

图源:Advanced Materials 33, 2101589 (2021).

同样,石墨烯也被用于改善混合系统中电极的导电性。已经有研究工作实验实现了由银纳米线和电化学剥离石墨烯(EG)组成的透明电极。详细地说,首先将含有银纳米线的溶液喷涂到柔性基底上,即聚萘二甲酸乙二醇酯,然后进行电化学剥离石墨烯分散。研究人员比较了不同体积的带有电化学剥离石墨烯层的银纳米线与原始银纳米线的薄片电阻和透射率。此外,为了长期稳定性,样品在空气中暴露120天。在此期间,混合材料的薄片电阻保持不变,而原始样品的薄片电阻在暴露10天后增加。研究报告说,通过部署电化学剥离石墨烯层,他们能够在不显著降低透射率的情况下降低薄片电阻,同时将粗糙度分别从78Ω/sq降低到13.7Ω/sq,从16.4 nm降低到4.6 nm。由于分散层使Ag-纳米线结和孔的表面变平,因此EG涂层降低了薄板电阻和粗糙度。本文进一步展示了该电极作为阳极在有机太阳能电池和聚合物LED中的应用。

二维材料不仅可以降低表面粗糙度,而且可以作为保护层防止金属纳米线氧化。银纳米线是钙钛矿太阳能电池(PVSC)最常用的底部电极金属线之一,由于钙钛矿层中卤化物的释放而导致腐蚀问题。最近有研究人员提出采用大尺寸氧化石墨烯(LGO)片作为银纳米线透明电极的保护层。作为保护层的大尺寸氧化石墨烯片对于减少整体边界面积至关重要,因为片之间的边界允许卤化物物种进入。在这项工作中,采用离心法分离不同尺寸的氧化石墨烯板。将减少的大尺寸氧化石墨烯分散液滴在Ag-纳米线电极上,并使用稳定的热风流进行干燥。电极保持其初始电阻超过45小时,而原始样品在0.8 V偏压下10小时后电阻呈指数增长。本研究证明了构建高稳定性PVSC的可能性。

通过增加发光二维材料的自发辐射率,可以产生更亮的光源。有腔和无腔的自发辐射率速率之比称为Purcell因子,它与Q因子成正比,与光模体积成反比。已经有很多方法可以实现高的光致发光强度,这可以通过纳米线与过渡金属二硫化物的杂交来实现。利用纳米线也是解决光学各向异性的常用方法。通过调整纳米结构的形态,可以控制共振频率和质量因子。随着二维 过渡金属二硫化物与等离子体或光学纳米线的结合,光的有效控制和增强可以应用于实际。

图4. 将半导体纳米线与二维材料结合可用于高性能光探测器

图源:Advanced Materials 33, 2101589 (2021).

总结与展望

如前所述,本文介绍了贵金属纳米线、半导体纳米线和钙钛矿纳米线,以及它们在传统应用、集成光子电路、光增强、路径控制和光电子学中的最新应用。此外,在综述中还介绍了通过加入过渡金属二硫化物层、石墨烯和氧化石墨烯等二维材料而取得的显著改进。研究表明,对这些二维材料的结构特征进行优化至关重要,比如尺寸或纳米线之间的距离。因此,对优化这些特性进行深入研究是有希望的。

本综述回顾了用于基于二维材料的光子和光电子器件的纳米线。纳米线在光子集成电路中具有作为谐振器和波导的潜在用途。介绍了利用纳米线的特性以及纳米线与二维材料的混合。不同类型的纳米线和二维材料的特性和用途有望为 探索 新的杂交材料提供新的视角,并最终改变现有设计,提高性能。

然而,文章认为,这些耦合仍然有一些缺点需要克服。例如,由于它们是纳米材料的混合,因此应该研究简便的合成方法。复杂的合成方法可能导致产率低、耗时且成本相对较高。此外,它们的长期稳定性仍需研究。高湿度、极高或极低的工作温度等恶劣环境可能会导致性能不佳。因此,提高它们的重复性、再现性,并在恶劣环境中对其性能进行试验,对未来的发展至关重要。此外,目前正在努力提高这些材料的性能。例如,已经有研究人员开发了一种用于超灵敏光电探测器的钙钛矿纳米线结晶度增加的制造方法。同样,未来的应用预计将通过提高材料的结晶度和研究设备的最佳布局来实现可扩展和集成的系统,从而提高结果。

参考文献:

XSoumyabrata Roy, Xiang Zhang, Anand B. Puthirath et al. , Structure, Properties and Applications of Two-Dimensional Hexagonal Boron Nitride. Advanced Materials 33 , 2101589 (2021).

简介

吴培亨,超导电子学家。南京大学教授。1939年11月生于上海市,原籍江苏张家港。1961年毕业于南京大学物理系。现任南京大学超导电子学研究所所长,兼中国电子学会超导电子学分会主任。2005年当选为中国科学院院士。

长期从事超导电子学的研究,尤长于超导电子器件的高频(微波到太赫兹波段)套用。在探索有关物理过程的基本规律、发展新型的超导电子器件、推动超导电子器件的实际套用等领域开展研究工作,取得的主要成就涉及高温超导体内的隧道过程多种低温和高温超导结的制备、表征、高频特性与套用超导混频器和高灵敏接收机、频率精密计量、高精度高频信号源高温超导薄膜的制备、加工、性能最佳化等方面。

基本信息

吴培亨,超导电子学家,南京大学电子科学与工程系教授、超导电子学研究所所长,主要学术兼职有国务院学位委员会学科评议组(物理、天文组)成员、中国电子学会超导电子学分会主任等。

吴培亨

原籍江苏张家港,1939年11月生于上海市,1946年迁居苏州,1956年毕业于江苏省苏州中学高中部,考入南京大学物理系,1961年毕业后留校任教至今。曾任南京大学研究生院院长、南京大学信息物理系主任、丹麦技术大学客座教授、日本东京大学客座教授、日本东北大学客座教授和教授、德国尤利希研究中心客座科学家、英国国家物理实验室和英国剑桥大学高级访问学者等职,长期担任国际超导电子学会议国际顾问委员会委员。

专长于超导电子学及其高频(微波至太赫兹波段)套用。在探索超导体内有关物理过程的基本规律、据以发展新型的电子器件、努力推进实际套用等方面做了系统的工作。曾获得国家自然科学三等奖(1990)、国家教委科技进步一等奖(1989)、全国科学大会奖(1978)等七项省部级以上的奖励。取得的主要成就涉及高温超导体内的隧道过程超导结的制备、表征、高频特性与套用超导混频器和高灵敏接收机、频率精密计量、高精度高频信号源高温超导薄膜的制备、加工、性能最佳化等方面。他所领导的南京大学超导电子学研究所是中国从事有关领域的研究与培养高级人才的最重要的基地之一。1979年8月至1980年10月在剑桥大学Cavendish实验室作高级访问学者。1980年10月至1981年12月在英国国家物理实验室作访问研究员。1988年5月至1988年6月在Denmark大学作访问教授。1989年12月至1990年6月在德国ForschungszentrumJuelich作访问科学家。1993年10月至1994年4月在日本东京大学作访问教授。1995年5月至1995年6月在Technical University of Denmark作访问教授。1996年3月至1996年9月,在日本Tohoku大学作访问教授。中国超导科技专家委员会委员,江苏省电子科技协会副主席,中国电子科技协会会员,IEE会员,IEEE高级会员

研究内容 量子计算机

量子计算机最基本的东西是什么呢?仍然是比特,但是这个比特的0态和1态是可以同时占据的,比如说某一定的机率占据其中的0态,另外一个机率占据1态,量子比特最重要的特点就是可以有两个量子态,这两个量子态是可以同时占据的。"吴培亨在演讲中提到,有人认为19世纪是机器的年代,那个时候工业革命,是用各种各样机器发展的。20世纪是信息的时代。21世纪是什么时代呢?有人说是量子的时代。现在许多国民经济总产值里面的东西,至少有30%可以追溯到量子力学,没有量子力学,国民经济总产值里面30%的东西都没有,比如雷射等。不管怎么说,在21世纪的今天,量子理论、量子技术,是非常重要的。

普朗克提出一个理论,黑体辐射的量子理论。无论是黑体的辐射能量或者是吸收能量,不能够是连续变化的,只能够是最小单位的整数倍。比如说现在喝水,原则上说随便你要喝多少,可以连续变化。但是黑体辐射的辐射能量或者吸收能量不可能连续变化,它发射的能量有一个最小的份额,吸收的时候也有一个最小的份额,这个最小的份额即最小的单位,就叫做量子。"吴培亨表示,普朗克提出辐射量子理论以后,成功地解决了黑体辐射的问题。但是在普朗克那个时代,大家觉得这个没有道理,为什么一定是最小单位的一份?这个大家不大能接受。普朗克自己提出这个东西的时候,是作为计算的理论,是一种计算的方法。量子究竟是怎么回事,他自己也不知道。直到1905年,爱因斯坦研究光电效应,某一种金属,把光打上去,在一定条件下金属的电子可以脱离金属跳出来。其中最基本的就是对于某一种金属来说,有一个特定的频率,照上去光的频率一定要比特定的频率高,电子才能够打出来,如果比那个频率低,打不出来。爱因斯坦解释,光除了有波动性质之外,还有量子的性质,它是一颗一颗、一份一份的,只有当最小单元所含有的能量足够大的时候,才能够把电子打出来,而最小单位的能量,或者说每一个光子所携带的能量等于多少?等于某一个常数乘上光的频率,这就解释了当频率太低的时候,一个光子所具备的能量不足以把电子从金属里面打出来,爱因斯坦用光的量子理论,成功地解释了光电效应。

吴培亨 量子计算机的好处

量子力学里面有许多主要的结论,与日常生活的概念听起来是不一样的,因为它处的对象是元子层次的世界。在日常生活的巨观世界,支配运动的规律是牛顿力学而在微观世界里面,则是量子力学。现在为什么有人说21世纪会变成量子的世界?原因是量子力学的一系列规律或者量子力学规律的适用性,它的范围逐渐大起来。"吴培亨在演讲中指出,量子力学里面有几条很著名的定理:一是光的粒子性和波动性二是量子态可以同时占据三是所谓测不准关系,对一个粒子来说,要同时把它所在的位置测准,要把它的速度测准,不可能。他认为,现今对于量子计算机来说,最重要的就是量子态可以同时占据的事情。这就相当于薛丁格猫,光子两个状态可以同时去,与巨观系统概念完全不一样,量子计算机最基本的理论依据就在于此。理论依据是什么?我们要去做,找那个物理系统,它要有两个量子态,这两个量子态要能够同时占据,这就是现在量子计算机或者量子计算所研究的主要内容。

吴培亨

从计算机的角度来说,这意味着什么?意味着用量子比特的时候,是一个并行的计算,对经典比特来说,因为任何时刻只能占据一个状态,你只能对这个状态起作用。而对量子比特来说,相当于八个系统同时在做用量子比特和经典比特比,量子的所谓并行性是量子计算最精华的所在。"吴培亨分析称,有许多计算的问题,不是不会做而是没有时间去做。如果说用了量子比特以后,做任何一种计算,相当于并行的计算,原来要一个一个做的计算可以一起做,计算就快了很多。他还形象地举例称,如果一个数字是129位,按照这个来分解因式,大概要8个月。如果一个数字是250位,分解因式要到100万年。如果这个数字是1000位,分解它的时候是10的25次方年。今天要去破解银行的系统,8个月也许还有可能,如果数字大到100万年才分解,几乎是不可能完成的任务。而这些东西,用量子算法,几分钟就解决了。量子计算机的未来

量子计算机和经典计算机最大的区别就是量子比特用什么样的系统实现。这个物理系统要有两个量子态。这两个量子态能够被同时占据,这对计算机来说,就相当于用量子比特有量子并行算法的可能性。

目前量子计算是初露端倪但前程似锦。至于最后能不能做到像今天这些经典计算机一样,谁也说不准,这就是科学。

个人简历

吴培亨,男,1939年生,教授、博士生导师1961年毕业于南京大学物理系。2005年当选为中科院院士

1979年8月至1980年10月在剑桥大学Cavendish实验室作高级访问学者,1980年10月至1981年12月在英国国家物理实验室作访问研究员

吴培亨

1988年5月至1988年6月在Denmark大学作访问教授

1989年12月至1990年6月在德国Forschungszentrum Juelich作访问科学家

1993年10月至1994年4月在日本东京大学作访问教授

1995年5月至1995年6月在Technical University of Denmark作访问教授

1996年3月至1996年9月,在日本Tohoku大学作访问教授

中国超导科技专家委员会委员

江苏省电子科技协会副主席

中国电子科技协会会员

IEE会员,IEEE高级会员

获奖情况

⒈吴培亨,杨森祖,程其恒,"液氮温区超导电子器件的套用基础研究"获国家教委科技进步奖一等

吴培亨

2.吴培亨,杨森祖,程其恒,鲍家善,"超导隧道效应的高频套用"获江苏省科技进步奖三等奖

⒊吴培亨,杨森祖,程其恒,鲍家善,"毫米波、亚毫米波段超导器件的开发和研究"获国家教委科技进步奖二等奖

⒋微波超导科研组,"三公分波段微波超导接收机"获全国科学大会奖

⒌吴培亨,程其恒,杨森祖,"氧化物超导体在液氮温区的约瑟夫逊效应的研究"获国家自然科学三等奖

人物语录

"我想利用这个机会,和大家分享一点关于量子计算方面最基本的概念。大家都知道现在的计算机非常普遍,从大型计算机到台式计算机到笔记本电脑,这些都已经很清楚。为了区别起见,我把我们现在常用的计算机叫做经典(或传统)计算机。今天我要说的完全是另外一类计算机,它是按照量子力学的原理所构建的完全新型的一种计算机。"吴培亨表示,有关量子计算机是最近十几年以来,科技界很热心做的事情。起初只是讨论量子力学的基本原理能不能用到计算机上去,但直到现在,还没有做出真正像经典计算机那样可以用的计算机。

吴培亨

"所以在学术界里,大多数人是将其称为量子计算,而不称为量子计算机。"吴培亨认为,随着科技的进步和时代的发展,有可能通过这个概念做出很好的、全新的计算机。

"为了要说明白这个概念,我从经典计算机开始说起。"吴培亨称,世界上第二台计算机大概是在上世纪40年代做出来的,那时候还没有电晶体,更没有积体电路,开始的时候都是用电子管做的。第二台计算机用了1800个电子管,重量30吨,里面所用到的电线大概是800公里,此后做了许许多多的改进,并涌现出半导体、积体电路等。"在将近60多年计算机的发展中,尽管经历了许许多多重大的变革,但是有两件事情没有变:在经典计算机里面,数的表示都用二进制,而我们通常是十进制另外,要构建一个物理系统作为信息的载体,0和1无疑是最简单的方法。"吴培亨介绍,从学术上来说经典计算机一定要构建一个物理系统,作为信息的载体,这个物理系统有两个态,分别叫0态和1态,任何一个时刻,要么占据0态,要么占据1态,没有一个系统同时占据0态和1态。总之,经典计算机里面最基本的两个东西:一是用二进制二是二进制的信息载体是一个经典的比特,经典的比特在任何特定的时刻只能够要么是0态,要么是1态。

著作论文 著作

⒈鲍家善,吴培亨编译,《参量放大器(Ⅱ)》,科学出版社,北京,1962

⒉吴培亨等译,《微波测量方法》,上海科技出版社,上海,1964

⒊《微波电路》,科学出版社,1980

论文

1. Microwave Superconducting Receivers,Physics,Vol.7,No.3,1978

2. Broadband Video Detectorsat8mm Wave Band(invitedtalk),Proc. of the 1st National Conference on Superconductive Tunnelling, Nanjing,1978

吴培亨

3. A Phase-Plane Solution of the Circuits Containing,Josephson Junction Physics,Vol.8 No.3,1979

4. J.R. Wald and P.H. Wu,An Alternative Analysis of the Nonlinear Equations of the current-Driven Josephson Junction. Journal of low Temperature, 1982

5. P.H.Wu, N.R.Cross, T.G.Blaney, Fabrication of Stable Josephson Point Contacts for Submillimetre-Wavelength Mixers, J.phys.E., Vol.16,1983

6. Encapsulated Point Contacts for Sub-mm wavelength mixers, Proc. of Joint Sino-Japanese Seminar on the Physics and Applications of Josephson Effect. Beijing, October 1983

⒎AGeneralSurveyoftheResearchonSuperconductivetunnellinginChinaIBID,1983

⒏ApplicationsoftheJosephsonEffecttoMicrowaveMeasurements(invitedtalk),TheworkshoponMeasurementsinSouthwestChinaKu,1984

⒐ExperimentalStudiesonJosephsonOscillator-mixerLowTemperatureandSuperconductivity,1985

⒑H.Ouyang,P.H.Wu,ChaosinJosephsonJunctionandtheEffectsofcosぷterm,Proc.ofthe4thNationalConferenceonSuperconductiveTunnelling,1985

⒒ConversionEfficiencyandNoiseofIncoherentDetectioninJosephsonOscillator-mixer,Proc.ofthe4thNationalConferenceonSuperconductiveTunnelling,1985

⒓QiangHu,P.H.Wu,AnadjustablePulseGeneratorUsingJosephsonTunnelJunction,Proc.ofthe4thNationalConferenceonSuperconductiveTunnelling,1985

⒔CalculatingtheParametersofanSISJunctionfromtheExperimentalⅣCurve,Proc.ofthe4thNationalConferenceonSuperconductiveTunnelling,1985

⒕吴培亨,杨森祖,程其恒,吉争呜,采用单极子微带天线耦合的SIS结混频器变频效率的研究,低温物理学报,Vol.8,No.4,1986 15.吴培亨,小面积Pb合金隧道结中的准粒子射频感应台阶,低温物理学报,Vol.8,No.3,1986

⒗吴培亨,盛玉宝,籍荣甫,用于亚毫米波的点接触超导二极体的研制,低温物理学报,Vol.8,No.4,1986

⒘Q.Huang,P.H.Wu,StudyonHysteresisinJosephsonTunnelJunction:CalculatingtheMinimumCurrentonPhasePlane,Jpn.J.Appl.Phys.,Vol.26,1987

⒙吴培亨,程其恒,杨森祖,范敏华,冯一军,陈健,李元等,JosephsonFrequencyMixingBeeenTwoK`-`a`!`BandSignalsinCeramicBridgeatliquidNitrogenTemperatures,KexueTongbao,Vol.32,No.24,1987

⒚P.H.Wu,SuperconductingElectronicsinChinaInternationalSuperconductivityElectronicsConfer,1987

⒛P.H.Wu,Q.H.Cheng,S.Z.Yangetal,TheJosephsonEffectinaCeramicBridgeatLiquidNitrogenTemperatureJapanese,JournalofApplied,1987

21.M.H.Fan,P.H.Wu,TheOurrenceofChaosinRF-DrivenJosephsonJunctionandtheTailsonitsⅣCurves,InternationalSuperconductivityElectronicsConfer,1987

22.P.H.Wu,M.Qian,SimpleMethodtoDetermineMicrowavePhaseElectronicsLetters,Vol.23,No.20,1987

23.TheJosephsoneffectinLiquidNitrogenUsingallCeramicJunction,J.NanjingUniv(NaturalSciences),1987

24.M.H.Fan,P.H.Wu,TheBifurcation-ChaoticTreesSeparatedByPeriodicSolutionsinanRF-DrivenJosephsonJunction,InternationalSuperconductivityElectronicsConfer,1987

25.吴培亨,程其恒,杨森祖,范敏华,冯一军,陈健,李元,陆怀先,液氮温度下陶瓷桥中两个Ka波段信号的约瑟夫逊频率混频,科学通报,Vol.16,1987

26.Y.M.ZhangandP.H.Wu,Anumericalcalculationoftheheightofthefirstzero-fieldstepinlongoverlapJosephsontunnelJunction,InternationalSuperconductivityElectronicsConfer,1987

27.吴培亨,超导结声子检测器中信号幅度的理论估算,低温与超导,Vol.16,No.3,1988

28.吴培亨,SIS结参量放大器的研究,低温物理学报,Vol.10,No.3,1988

29.李元,杨森祖,吴培亨,Nb/Al-AlOx/Nb隧道结的制备,物理学报,Vol.37,No.5,1988 30,S.Z.Yang,Z.M.Ji,Z.J.Sun,D.Jin,P.H.Wuetal,Researchon?YBCOSuperconductingthinfilmsatLiquidNitrogentemperaturesActaPhysicaTemperaturaeHumilis,1988

31.吴培亨,约瑟夫逊结中分岔和混沌的研究,低温与超导,Vol.16,No.4,1988

32.N.X.Shen,P.H.Wu,S.Z.Yang,Q.H.Cheng,Y.B.Sheng,HeightsofMicrowaveInducedSteps,TemperatureDependentSupercurrentandOtherExperimentalObservationsinYBCOWeakLinkIEEETrans.,Vol.MAG-25,No.2,1989

33.M.H.Fan,P.H.Wu,InterpretationofSomeExperimentalObservationsonYBCOweakLinkintermsofSeriesGrainBoundaryJunctions,J.Appl.Phys,Vol.66,1989

34.JimingS,P.H.Wuetal,JosephsonHarmonicMixingandInternalOscillation-mixinginYBCOsuperconduc-tingWeakLinkatLiquidNitrogenTemperatrueIEEETrans.,Vol.MAG-25,No.2,1989

35.Y.M.Zhan,P.H.Wu,NumericalCalculationoftheheightofvelocity-matchingstepofflux-flowtypeJosephsonOscillator,J.Appl.Phys,Vol.68,1990

36.SenzuYa,P.H.Wuetal,PreparationofYBCOthinfilmsbymagronSputtingwithinSituPlasmaOxida-tion,J.Appl.Phys,Vol.68,1990

37.QianMin,K.Z.Xue,P.H.Wu,ApplicationofKramers-KronigTransformtoDeterminationofCavityImpedanceforBothSmallandLargeCouplingsElectronicsLetters,Vol.261990

38.M.H.FanP.H.WuMeasurementsontransitionfromquasiperiodicitytoChaosinaJosephsonJunctionanalog,ActaPhysicaTemperaturaeHumilis,1990

39.P.H.Wu,Yunhu,C.Heiden,Uptothe51stharmonicmixinginYBCOweaklinkOperatedinLiquidNitrogen,Appl.Phys.Lett,Vol.57,1990

40.SomePossibleApplicationsofhighTcSuperconductorsinAnalogElectronics(invitedtalk),Proc.oftheinternationalWorkshoponHighTemperatureSuperconductivity,1990

41.SunZhij,JiZhengming,YangSinzu,andWuPeiheng,FabricationofY-Ba-Cu-O/barrier/Y-Ba-Cu-OtrilayerstructureChinese,J.ofLowTemperature,Physics(formerlyActaPhysicaTemperaturaeHumilisSinica),Vol.13,P.334,1991

42.P.H.Wu,YunhuiXu,andC.HeidenHarmonischesMischen?mitYBa`-`2`!`Cu`-`3`!`O`-`7-x`!`Microbrucken,insupraleitungundTieftepaturtichnik,(VDI-TZProceedings,VDI-VerlagGmbH,Dusseldorf),1991

43.FengYij,ChengQiheng,LiuHanmo,WuPeiheng,YangSenzu,JiZh,ObservationofthespatialdistributionofthecriticalcurrentdensityJcinYBaCuOsuperconductingthinfilmsbylowtemperataturescanningmicroscopy,ChineseJ.ofLowTemperaturePhysics(formerlyAct,1991

44.J.H.Zhou,H.Zhang,S.Z.Yang,andP.H.Wu,ReactiveiochingofniobiumfilmsJ.NanjingUniv.(Naturalsciences),Vol.28,P.239,1992

45.FengYij,ChengQiheng,WuPeiheng,andLiuHanmo,ObservationofthespatialdistributionofthecriticalcurrentdensityinTiBaCaCuOthinfilm,ChineseJ.ofLowTemperaturePhysics(formerlyActaPhysicaTeperaturaeHumilisSinica),Vol.14,P.356,1992

46.P.H.Wu,QianMin,CalculationsofthemicrowaveconductivityofhighTcsuperconductingthinfilmsfrompowertransmissionmearurements,J.Appl.Phys.,Vol.71,P.5550,1992

47.J.H.Zhou,P.H.Wu,S.Z.Yang,AnalysisofSISquasiparticleparametricamplifierChinese,J.ofLowTemperaturePhysics(formerlyActaPhysicaTemperaturaeHumilisSinica),Vol.14,P.136,1992

48.J.H.Zhou,H.F.Xu,S.Z.Yang,andP.H.Wu,Parametricamplificationusingsupercinductor-insulator-superconductorjunctions:Astudycarriedoutonanelectronicsimulator,Appl.Phys.lett.,Vol.60,P.1390,1992

49.J.H.Zhou,H.F.Xu,S.Z.YangandP.H.Wu,AsimulationstudyonSISparametricamplifier,KexueTongbao,Vol.37,P.857,1992

50.Y.J.Feng,Q.H.Cheng,P.H.WuandH.M.Liu,SpatialvariationofthecriticalcurrentdensityofhighTcsuperconductingthinfilms,J.Appl.Phys.,Vol.72,1992

51.JinBiaoChengQiheng,XuWeiwei,WuPeiheng,YanShaolinandHarmonicmixerat3mmwavebandatliquidnitrogentemperatures,ChineseJ.ofLowTemperaturePhysics(formerlyActaPhysicaTemperatureaeHumilisSinica),Vol.14,P.346,1992


欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/dianzi/9171217.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-04-25
下一篇 2023-04-25

发表评论

登录后才能评论

评论列表(0条)

保存