半导体的能带结构求助

半导体的能带结构求助,第1张

半导体能带理论

分析半导体能带理论,必须从能级,能带,禁带,价带,导带开始。因此分析如下:

能级(Enegy Level):在孤立原子中,原子核外的电子按照一定的壳层排列,每一壳层容纳一定数量的电子。每个壳层上的电子具有分立的能量值,也就是电子按能级分布。为简明起见,在表示能量高低的图上,用一条条高低不同的水平线表示电子的能级,此图称为电子能级图。能带(Enegy Band):晶体中大量的原子集合在一起,而且原子之间距离很近,以硅为例,每立方厘米的体积内有5×1022个原子,原子之间的最短距离为0.235nm。致使离原子核较远的壳层发生交叠,壳层交叠使电子不再局限于某个原子上,有可能转移到相邻原子的相似壳层上去,也可能从相邻原子运动到更远的原子壳层上去,这种现象称为电子的共有化。从而使本来处于同一能量状态的电子产生微小的能量差异,与此相对应的能级扩展为能带。 禁带(Forbidden Band):允许被电子占据的能带称为允许带,允许带之间的范围是不允许电子占据的,此范围称为禁带。原子壳层中的内层允许带总是被电子先占满,然后再占据能量更高的外面一层的允许带。被电子占满的允许带称为满带,每一个能级上都没有电子的能带称为空带。 价带(Valence Band):原子中最外层的电子称为价电子,与价电带。 导带(Conduction Band):价带以上能量最低的允许带称为导带。 导带的底能级表示为Ec,价带的顶能级表示为Ev,Ec与Ev之间的能量间隔称为禁带Eg。 半导体的导电作用是通过带电粒子的运动(形成电流)来实现的,这种电流的载体称为载流子。半导体中的载流子是带负电的电子和带正电的空穴。对于不同的材料,禁带宽度不同,导带中电子的数目也不同,从而有不同的导电性。例如,绝缘材料SiO2的Eg约为5.2eV,导带中电子极少,所以导电性不好,电阻率大于1012Ω·cm。半导体Si的Eg约为1.1eV,导带中有一定数目的电子,从而有一定的导电性,电阻率为10-3—1012Ω·cm。金属的导带与价带有一定程度的重合,Eg=0,价电子可以在金属中自由运动,所以导电性好,电阻率为10-6—10-3Ω·cm。

决定半导体材料的基本物理特性,即原子或离子的长程有序的周期性排列。按空间点阵学说,晶体的内在结构可概括为一些相同点在空间有规则地作周期性的无限分布。点子的总体称为点阵,通过点阵的结点可作许多平行的直线组和平行的晶面组。这样,点阵就成网格,称为晶格。由于晶格的周期性,可取一个以格点为顶点、边长等于该方向上的周期的六面体作为重复单元,来概括晶格的特征。固体物理学取最小的重复单元,格点只在顶角上。这样的重复单元只反映晶体结构的周期性,称为原胞。结晶学取较大的重复单元,格点不仅在顶角上,还可在体心和面心上,这样的重复单元既反映晶格的周期性,也反映了晶体的对称性。

常见的半导体的晶体结构有金刚石型、闪锌矿型、纤锌矿型和氯化钠型4种,如图和表所示。在三元化合物半导体中有部分呈黄铜矿型结构,金刚石型、闪锌矿型和氯化钠型结构可看成是由两套面心立方格子套构而成。不同的是,金刚石型和闪锌矿型是两套格子沿体

对角线的1/4方向套构,而氯化钠型则是沿1/2[100]方向套构金刚石晶格中所有原子同种,而闪锌矿和氯化钠晶格中有两种原子闪锌矿型各晶面的原子排布总数目与金刚石型相同,但在同一晶面或同一晶向上,两种原子的排布却不相同。纤锌矿型属六方晶系,其中硫原子呈六方密堆集,而锌原子则占据四面体间隙的一半,与闪锌矿相似,它们的每一个原子场处于异种原子构成的正四面体中心。但闪锌矿结构中,次近邻异种原子层的原子位置彼此错开60°,而在纤锌矿型中,则是上下相对的。采取这种方式使次近邻异种原子的距离更近,会增强正负离子的相互吸引作用,因此,纤锌矿型多出现于两种原子间负电性差大、化学键中离子键成分高的二元化合物中。

如何考察结构能带

如何考察一个能带(DOS)结构和复杂的相互作用 Part 1 Electric conductivity and Band structures

固体计算最终结果将以能带结构展示出来,关于能带结构,固体中化学键分析,轨道之间的相互作用的解释等是一个复杂的过程,这里只是简单的根据本人的经验对此作定性的描述. 根据Fermi面附近能带的分布情况,固体分为绝缘体(insulator),半导体(semi-conductor),导体(conductor),导体比较典型的是金属,能带在Fermi面附近是连续分布,主要由于金属d,s以及p轨道之间能级重叠导致了Fermi面能带的联系分布,金属电导的好坏不仅仅是看Fermi附近是不是存在可供电子跃迁的能级,还要看这些能级是不是扩展态(extended or delocalized states),如果是定域态(localized)那么及时Fermi附近呈现Metallic特性,电导不会比金属好,比如过渡金属化合物电导就要比金属本身差很多。过渡金属本身电导也会受到d轨道扩展程度的影响,比如3d系列Fe,Co,Ni等电导率不是很大,比起Cu,Ag等就差的远了,对于Fe等金属Fermi面主要陈分是3d轨道,而对于Cu和Ag,由于3d(4d)轨道已经成满层排列,因此Fermi面落在了扩展的s轨道上面,这些轨道上的电子类似于自由电子气,能带呈现抛物线的形式,E(k)=h^2k^2/2me具有比较高的电导率,相反Fe等的3d轨道成分也可以分为巡游电子(自由电子,轨道为扩展性,能带呈现抛物线特点)和定域轨道两类,定于轨道能带在k空间是离域的,色散关系比较平直,但在晶体实空间内高度的定域,受到原子核的Coulomb吸引作用比较强烈,难以发生迁移,因此如果填充电子落在这些d轨道上面,电导性会大大降低。当然具体取决于DOS或者能带是如何分布的,这个和晶体结构有关系。在一些化合物中如TiC等结构中,Fermi面最后落在以C2p轨道为主要成分的能带上面,p轨道主要参与结构共价键形成,这些电子能级一般定域在Ti和C原子周围,电子处于紧束缚状态,难以在外加电场下发生迁移,因此这时候化合物的电导会进一步下降。 Part 2 关于半导体能带的特点:

半导体能带类似于绝缘体,区别在于带隙数值,一般认为宽带隙半导体的能带最大在4eV左右。如果比这个更大,可以认为是绝缘体。半导体能带主要分成三个部分:valence band, band gap, conduction band。

Valence band:主要由电负性较大的原子组成,如InP,价带主要是P的3s,3p轨道,导带一般是金属原子组成,如In的s,p轨道等。从化学键角度考虑,价带一般是Bonding,当然也有部分结构表现出Anti-bonding状态。

同质P-N结的能带结构图是如何得出的

p-n结基本概念是解决许多微电子和光电子器件的物理基础。对于许多半导场器件问题的理解不够深透,归根到底还在于对于p-n结概念的认识尚有模糊之处的缘故。

因为p-n结的一个重要特点就是其中存在有电场很强的空间电荷区,故p-n结的形成机理,关键也就在于空间电荷区的形成问题;p-n结的能带也就反映了空间电荷区中电场的作用。

(1) 载流子的转移:

p型半导体和n型半导体在此需要考虑的两个不同点即为(见图(a)):①功函数W不同;②主要(多数)载流子种类不同。因此,当p型半导体和n型半导体紧密结合而成的一个体系——p-n结时,为了达到热平衡状态(即无能量转移的动态平衡状态),就会出现载流子的转移:电子从功函数小的半导体发射到功函数大的半导体去,或者载流子从浓度大的一边扩散到浓度小的一边去。对于同质结而言,载流子的转移机理主要是浓度梯度所引起的扩散;对于异质结(例如Si-Ge异质结,金属-半导体接触)而言,载流子的转移机理则主要是功函数不同所引起的热发射。

(2) 空间电荷和内建电场的产生:

现在考虑同质p-n结的形成:在p型半导体与n型半导体的接触边缘附近处(即冶金学界面附近处),当有空穴从p型半导体扩散到n型半导体一边去了之后,就在n型半导体中增加了正电荷,同时在p型半导体中减少了正电荷,从而也就在p型半导体中留下了不能移动的电离受主中心——负离子中心;与此同时,当有电子从n型半导体扩散到p型半导体一边去了之后,就在p型半导体中增加了负电荷,同时在n型半导体中减少了负电荷,从而也就在n型半导体中留下了不能移动的电离施主中心——正离子中心。这就意味着,在p型半导体一边多出了负电荷(由电离受主中心和电子所提供),在n型半导体一边多出了正电荷(由电离施主中心和空穴所提供),这些由电离杂质中心和载流子所提供的多余电荷即称为空间电荷,它们都局限于接触边缘附近处,以电偶极层的形式存在,如图(b)所示。

由于在两种半导体接触边缘的附近处存在着正、负空间电荷分列两边的偶极层,所以就产生出一个从n型半导体指向p型半导体的电场,称为内建电场。在此,内建电场仅局限于空间电荷区范围以内,在空间电荷区以外都是不存在电场的电中性区。

至于势垒区中内建电场的分布形式,决定于空间电荷的分布,主要是决定于掺杂浓度的分布。对于掺杂浓度在p-n结冶金学界面处突然改变者,称为突变结,其中内建电场在势垒区两边的分布基本上是线性分布;对于掺杂浓度在p-n结冶金学界面处线性地改变者,称为线性缓变结,其中内建电场的分布近似为亚抛物线分布。

(3) p-n结的势垒和能带:

因为在p-n结界面附近处存在着内建电场,而该内建电场的方向正好是阻挡着空穴进一步从p型半导体扩散到n型半导体去,同时也阻挡着电子从n型半导体进一步扩散到p型半导体去。于是从能量上来看,由于空间电荷-内建电场的出现,就使得电子在p型半导体一边的能量提高了,同时空穴在n型半导体一边的能量也提高了;而在界面附近处产生出了一个阻挡载流子进一步扩散的势垒——p-n结势垒。根据内建电场所引起的这种能量变化关系,即可画出p-n结的能带图,如图(c)所示。在达到热平衡之后,两边的Fermi能级(EF)是拉平(统一)的。能带的倾斜就表示著电场的存在。

①势垒高度:

实际上,在p-n结界面处的内建电场就使得p型半导体与n型半导体之间产生了电位差——内建电势差(或内建电压)。电场越强,内建电势差就越大。此内建电势差所对应的能量差(能量差=电势差×电子电荷),即为p-n结的势垒高度。虽然势垒高度并不直接反映的......

band structure图怎么看

MS

计算能带图分析

能带图的横座标是在模型对称性基础上取的

K

点。为什么要取

K

点呢?因为晶体的周

期性使得薛定谔方程的解也具有了周期性。按照对称性取

K

点,可以保证以最小的计算量

获得最全的能量特征解。能带图横座标是

K

点,其实就是倒格空间中的几何点。其中最重

要也最简单的就是

gamma

那个点,因为这个点在任何几何结构中都具有对称性,所以在

castep

里,有个最简单的

K

点选择,就是那个

gamma

选项。纵座标是能量。那么能带图应

该就是表示了研究体系中,各个具有对称性位置的点的能量。

我们所得到的体系总能量,

该就是整个体系各个点能量的加和。

记得氢原子的能量线吧?能带图中的能量带就像是氢原子中的每条能量线都拉宽为一个

带。通过能带图,能把价带和导带看出来。在

castep

里,分析能带结构的时候给定

scissors

这个选项某个值,

就可以加大价带和导带之间的空隙,

把绝缘体的价带和导带清楚地区分出

来。

DOS

叫态密度,也就是体系各个状态的密度,各个能量状态的密度。从

DOS

图也可以

清晰地看出带隙、价带、导带的位置。要理解

DOS

,需要将能带图和

DOS

结合起来。分析

的时候,如果选择了

full

,就会把体系的总态密度显示出来,如果选择了

PDOS

,就可以分

别把体系的

s

p

d

f

状态的态密度分别显示出来。还有一点要注意的是,如果在分析的

时候你选择了单个原子,

那么显示出来的就是这个原子的态密度。

否则显示的就是整个体系

原子的态密度。要把周期性结构能量由于微扰裂分成各个能带这个概念印在脑袋里。

最后还有一点,这里所有的能带图和

DOS

的讨论都是针对体系中的所有电子展开的。研究

的是体系中所有电子的能量状态。

根据量子力学假设,

由于原子核的质量远远大于电子,

此奥本海默假设原子核是静止不动的,

电子围绕原子核以某一概率在某个时刻出现。

我们经

常提到的总能量,就是体系电子的总能量。

这些是我看书的体会,不一定准确,大家多多批评啊!

摘要:本文总结了对于第一原理计算工作的结果分析的三个重要方面,以及各自的若

干要点用第一原理计算软件开展的工作,分析结果主要是从以下三个方面进行定性

/

定量的

讨论:

1

、电荷密度图(

charge density

2

、能带结构(

Energy Band Structure

3

、态密度(

Density of States

,简称

DOS

电荷密度图是以图的形式出现在文章中,非常直观,因此对于一般的入门级研究人员

来讲不会有任何的疑问。

唯一需要注意的就是这种分析的种种衍生形式,

比如差分电荷密图

def-ormation charge density

)和二次差分图(

difference charge density

)等等,加自旋极化

的工作还可能有自旋极化电荷密度图(

spin-polarized

charge

density

。所谓

差分

是指原子

组成体系(团簇)之后电荷的重新分布,

二次

是指同一个体系化学成分或者几何构型改变

之后电荷的重新分布,

因此通过这种差分图可以很直观地看出体系中个原子的成键情况。

过电荷聚集(

accumulation

/

损失(

depletion

)的具体空间分布,看成键的极性强弱;通过

某格点附近的电荷分布形状判断成键的轨道

(这个主要是对

d

轨道的分析,

对......

如何画异质结的能带结构示意图,急求

没有明确的统一规定,一般你可模拟画个投影的外形,然后必须得有吊车的作业半径,就是多大吨位的半径(主勾、付勾的),证明你布置正确!不能和其它吊车、建筑物相撞,有能和本建筑有一很好的链接(有的塔吊还要与建筑有一临时支撑等)

我想画文献里的那种能带结构图。。。有办法吗?用软件画 10分

这要看你需要画的是什么图了,不同的图有特殊的要求。如果仅仅是普通的框架,word就可以了,要是什么设计之类的就是CAD,立体图那就多了,p顶o/E,3Dmax,MATLAB之类的,很多,总之要找到合适的,不知道你要画那种图了,呵呵

电子的能量为什么能得到不同的能带图

同质P-N结的能带结构图的得出方法如下:

因为在p-n结界面附近处存在着内建电场,而该内建电场的方向正好是阻挡着空穴进一步从p型半导体扩散到n型半导体去,同时也阻挡着电子从n型半导体进一步扩散到p型半导体去。于是从能量上来看,由于空间电荷-内建电场的出现,就使得电子在p型半导体一边的能量提高了,同时空穴在n型半导体一边的能量也提高了;而在界面附近处产生出了一个阻挡载流子进一步扩散的势垒——p-n结势垒。根据内建电场所引起的这种能量变化关系,即可画出p-n结的能带图。在达到热平衡之后,两边的Fermi能级(EF)是拉平(统一)的。能带的倾斜就表示著电场的存在。

P-N结的定义:

采用不同的掺杂工艺,通过扩散作用,将P型半导体与N型半导体制作在同一块半导体(通常是硅或锗)基片上,在它们的交界面就形成空间电荷区称为PN结。PN结具有单向导电性,是电子技术中许多器件所利用的特性,例如半导体二极管、双极性晶体管的物质基础。


欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/dianzi/9175284.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-04-25
下一篇 2023-04-25

发表评论

登录后才能评论

评论列表(0条)

保存