P-型、N-型:电子由吸附质向氧化物表面传递,金属离子还原。吸附很强,且多为不可逆性的。
半导体指常温下导电性能介于导体与绝缘体之间的材料。半导体在集成电路、消费电子、通信系统、光伏发电、照明、大功率电源转换等领域都有应用,如二极管就是采用半导体制作的器件。
半导体
物质存在的形式多种多样,固体、液体、气体、等离子体等等。我们通常把导电性差的材料,如煤、人工晶体、琥珀、陶瓷等称为绝缘体。而把导电性比较好的金属如金、银、铜、铁、锡、铝等称为导体。
可以简单的把介于导体和绝缘体之间的材料称为半导体。与导体和绝缘体相比,半导体材料的发现是最晚的,直到20世纪30年代,当材料的提纯技术改进以后,半导体的存在才真正被学术界认可。
半导体是半导体,化学吸附是化学吸附,边界层是边界层,后两者尚可以有些联系,半导体是一点关系也没有。化学吸附是气相物质能不能进入液相的问题,是一个热力学问题,看的是气液两端该物质的化学势
边界层是气液两相相互流动而且是湍流时,从速度基本是整体流速的99%到速度为0的那段很短的距离,其厚度影响了传质、传热的速率,是产生传质、传热阻力的近似唯一部分,受流体流速的影响较大,在吸附的过程中,是一个动力学的问题。
你想要的可能是固体表面的吸附
用Langmuir吸附公式θ=ap/(1+ap)
θ表面覆盖率,p压力
主要是半导体气敏材料需要在一定温度下对待测气体有足够的吸附,气体分子可以充分在气敏材料表面(及晶界)扩散,引起材料的热电阻变化,这时测量电路就可以测量的准确。简单的说就是不加热气敏材料不够“灵敏”,有待测气体时材料本身电阻变化幅度不大,测不准。气敏传感器的应用主要有:一氧化碳气体的检测、瓦斯气体的检测、煤气的检测、氟利昂勠11、R12蓠检测、呼气中乙醇的检测、人体口腔口臭的检测等等。它将气体种类及其与浓度有关的信息转换成电信号根据这些电信号的强弱就可以获得与待测气体在环境中的存在情况有关的信息从而可以进行检测、监控、报警还可以通过接口电路与计算机组成自动检测、控制和报警系统。 由于气体种类繁多, 性质各不相同不可能用一种传感器检测所有类别的气体因此能实现气-电转换的传感器种类很多按构成气敏传感器材料可分为半导体和非半导体两大类。目前实际使用最多的是半导体气敏传感器因此本文主要讲述半导体气敏元件的有关原理及应用。
半导体气敏传感器是利用待测气体与半导体表面接触时,产生的电导率等物理性质变化来检测气体的。 按照半导体与气体相互作用时产生的变化只限于半导体表面或深入到半导体内部,可分为表面控制型和体控制型,前者半导体表面吸附的气体与半导体间发生电子接受,结果使半导体的电导率等物理性质发生变化,但内部化学组成不变,后者半导体与气体的反应,使半导体内部组成发生变化而使电导率变化。 按照半导体变化的物理特性,又可分为电阻型和非电阻型,电阻型半导体气敏元件是利用敏感材料接触气体时,其阻值变化来检测气体的成分或浓度厂半导体式气敏元件则是根据气体的吸附和反应,使其某些关系特性发生改变无对气体进行直接或间接的检测,如二极管伏安特性和场效应晶体管的阈值电压变化来检测被测气体的。
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)