硼有3种空间运动状态的电子。
在元素周期律中有没有提到泡利不相容原理:指在原子中不能容纳运动状态完全相同的电子。硫的最外层有6个电子,那么就有6种不同状态的电子。(这个状态包括电子层、电子亚层、电子伸展方向以及电子自旋方向)。
在电导体中
电流由电子在原子间的独立运动产生,并通常从电极的阴极到阳极。在半导体材料中,电流也是由运动的电子产生的。但有时候,将电流想象成从原子到原子的缺电子运动更具有说明性。半导体里的缺电子的原子被称为空穴(hole)。通常,空穴从电极的正极"移动"到负极。
彭练予是谁?他是中国科学院院士、湖南先进传感与信息技术创新研究院院长,他在“碳基材料与信息器件研讨会” 上表示,针对中国半导体材料、制造工艺和芯片设计落后的状况,碳基电子大有所为,其对国产芯片技术突围具有重要价值和意义。
目前中国芯片技术整体产业链面临着被“卡脖子”的状况,关键因素在于中国在芯片技术领域没有核心技术和自主研发能力,没有主导芯片从材料、设计到生产制备的全套技术中任何一个环节。相比传统的硅基技术,新一代的碳基电子及其信息器件具有更优异的性能,在包括数字电路、射频/模拟电路、传感器件、光电器件等所有半导体应用领域都具备革命性的应用前景。
而目前我们使用的手机、电脑等产品,这些产品的核心部件芯片正面临着性能极限的逼近。 所以科学家们正在探索用新材料来替代硅制造芯片,从而冲破芯片的物理极限。“没有芯片技术,就没有中国的现代化。实现由中国主导芯片技术的‘直道’超车,就是碳基电子的定位和使命。”彭练矛表示,碳基电子的终极使命就是在现有优势下扬长避短,从材料开始,全面突破现有的主流半导体技术,研制出中国人完全自主可控的芯片技术,在主流芯片领域产生重要影响。
多年来,为了在碳芯片研究上取得突破,国家投入了巨大的研发资金。日前,北京元芯碳基集成电路研究院宣布,中科院北京大学教授彭练矛和张志勇率领团队突破了长期困扰碳基半导体制备的瓶颈。有评论称,这项成果相对美、韩等国当前先进的硅基半导体技术,不是“弯道超车”,而是“造路超车”,将促进全球半导体行业迎来大洗牌。
晶体管(transistor)是一种固体半导体器件,具有检波、整流、放大、开关、稳压、信号调制等多种功能。晶体管作为一种可变电流开关,能够基于输入电压控制输出电流。与普通机械开关(如Relay、switch)不同,晶体管利用电讯号来控制自身的开合,而且开关速度可以非常快,实验室中的切换速度可100GHz以上。指内含集成电路的硅片,体积很小,常常是计算机或其他电子设备的一部分。
广义上,只要是使用微细加工手段制造出来的半导体片子,都可以叫做芯片,里面并不一定有电路。比如半导体光源芯片;比如机械芯片,如MEMS陀螺仪;或者生物芯片如DNA芯片。在通讯与信息技术中,当把范围局限到硅集成电路时,芯片和集成电路的交集就是在“硅晶片上的电路”上。芯片组,则是一系列相互关联的芯片组合,它们相互依赖,组合在一起能发挥更大的作用,比如计算机里面的处理器和南北桥芯片组,手机里面的射频、基带和电源管理芯片组。
以下这篇文章和你一起学习,《芯片里面的几千万的晶体管是怎么装进去的?》,来自网摘。
要想造个芯片, 首先, 你得画出来一个长这样的玩意儿给Foundry (外包的晶圆制造公司)
(此处担心有版权问题… 毕竟我也是拿别人钱干活的苦逼phd… 就不放全电路图了… 大家看看就好, 望理解!)
再放大...
我们终于看到一个门电路啦! 这是一个NAND Gate(与非门), 大概是这样:
A, B 是输入, Y是输出.
其中蓝色的是金属1层, 绿色是金属2层, 紫色是金属3层, 粉色是金属4层...
那晶体管(更正, 题主的"晶体管" 自199X年以后已经主要是 MOSFET, 即场效应管了 ) 呢?
仔细看图, 看到里面那些白色的点吗? 那是衬底, 还有一些绿色的边框? 那些是Active Layer (也即掺杂层.)
然后Foundry是怎么做的呢? 大体上分为以下几步:
首先搞到一块圆圆的硅晶圆, (就是一大块晶体硅, 打磨的很光滑, 一般是圆的)
图片按照生产步骤排列. 但是步骤总结单独写出.
1、湿洗(用各种试剂保持硅晶圆表面没有杂质)
2、光刻 (用紫外线透过蒙版照射硅晶圆, 被照到的地方就会容易被洗掉, 没被照到的地方就保持原样. 于是就可以在硅晶圆上面刻出想要的图案. 注意, 此时还没有加入杂质, 依然是一个硅晶圆. )
3、 离子注入(在硅晶圆不同的位置加入不同的杂质, 不同杂质根据浓度/位置的不同就组成了场效应管.)
4.1、干蚀刻 (之前用光刻出来的形状有许多其实不是我们需要的,而是为了离子注入而蚀刻的. 现在就要用等离子体把他们洗掉, 或者是一些第一步光刻先不需要刻出来的结构, 这一步进行蚀刻).
4.2、湿蚀刻(进一步洗掉, 但是用的是试剂, 所以叫湿蚀刻).--- 以上步骤完成后, 场效应管就已经被做出来啦~ 但是以上步骤一般都不止做一次, 很可能需要反反复复的做, 以达到要求. ---
5、等离子冲洗(用较弱的等离子束轰击整个芯片)
6、热处理, 其中又分为:
6.1、快速热退火 (就是瞬间把整个片子通过大功率灯啥的照到1200摄氏度以上, 然后慢慢地冷却下来, 为了使得注入的离子能更好的被启动以及热氧化)
6.2、退火
6.3、热氧化 (制造出二氧化硅, 也即场效应管的栅极(gate) )
7、化学气相淀积(CVD), 进一步精细处理表面的各种物质
8、物理气相淀积 (PVD),类似, 而且可以给敏感部件加coating
9、分子束外延 (MBE) 如果需要长单晶的话就需要这个..
10、电镀处理
11、化学/机械 表面处理然后芯片就差不多了, 接下来还要:
12、晶圆测试
13、晶圆打磨就可以出厂封装了.我们来一步步看:
就可以出厂封装了.我们来一步步看:
1、上面是氧化层, 下面是衬底(硅) -- 湿洗
2、一般来说, 先对整个衬底注入少量(10^10 ~ 10^13 / cm^3) 的P型物质(最外层少一个电子), 作为衬底 -- 离子注入
3、先加入Photo-resist, 保护住不想被蚀刻的地方 -- 光刻
4、上掩膜! (就是那个标注Cr的地方. 中间空的表示没有遮盖, 黑的表示遮住了.) -- 光刻
5、紫外线照上去... 下面被照得那一块就被反应了 -- 光刻
6、撤去掩膜. -- 光刻
7、把暴露出来的氧化层洗掉, 露出硅层(就可以注入离子了) -- 光刻
8、把保护层撤去. 这样就得到了一个准备注入的硅片. 这一步会反复在硅片上进行(几十次甚至上百次). -- 光刻
9、然后光刻完毕后, 往里面狠狠地插入一块少量(10^14 ~ 10^16 /cm^3) 注入的N型物质就做成了一个N-well (N-井) -- 离子注入
10、用干蚀刻把需要P-well的地方也蚀刻出来. 也可以再次使用光刻刻出来. -- 干蚀刻
11、上图将P-型半导体上部再次氧化出一层薄薄的二氧化硅. -- 热处理
12、用分子束外延处理长出的一层多晶硅, 该层可导电 -- 分子束外延
13、进一步的蚀刻, 做出精细的结构. (在退火以及部分CVD) -- 重复3-8光刻 + 湿蚀刻13 进一步的蚀刻, 做出精细的结构. (在退火以及部分CVD) -- 重复3-8光刻 + 湿蚀刻
14、再次狠狠地插入大量(10^18 ~ 10^20 / cm^3) 注入的P/N型物质, 此时注意MOSFET已经基本成型. -- 离子注入
15、用气相积淀 形成的氮化物层 -- 化学气相积淀
16、将氮化物蚀刻出沟道 -- 光刻 + 湿蚀刻
17、物理气相积淀长出 金属层 -- 物理气相积淀
18、将多余金属层蚀刻. 光刻 + 湿蚀刻重复 17-18 长出每个金属层哦对了... 最开始那个芯片, 大小大约是1.5mm x 0.8mm
啊~~ 找到一本关于光刻的书, 更新一下, 之前的回答有谬误..
书名: <<IC Fabrication Technology >>By BOSE
细说一下光刻. 题主问了: 小于头发丝直径的 *** 作会很困难, 所以光刻(比如说100nm)是怎么做的呢?
比如说我们要做一个100nm的门电路(90nm technology), 那么实际上是这样的:
这层掩膜是第一层, 大概是10倍左右的Die Size有两种方法制作: Emulsion Mask 和 Metal MaskEmulsion Mask:
这货分辨率可以达到 2000line / mm (其实挺差劲的... 所以sub-micron ,也即um级别以下的 VLSI不用... )这货分辨率可以达到 2000line / mm (其实挺差劲的... 所以sub-micron ,也即um级别以下的 VLSI不用... )制作方法: 首先: 需要在Rubylith (不会翻译...) 上面刻出一个比想要的掩膜大个20倍的形状 (大概是真正制作尺寸的200倍), 这个形状就可以用激光什么的刻出来, 只需要微米级别的刻度.
然后:
给!它!照!相! , 相片就是Emulsion Mask! 给!它!照!相! , 相片就是Emulsion Mask! 如果要拍的"照片"太大, 也有分区域照的方法. Metal Mask:
制作过程: 1、先做一个Emulsion Mask, 然后用Emulsion Mask以及我之前提到的17-18步做Metal Mask! 瞬间有种Recursion的感觉有木有!!!
2、Electron beam:
大概长这样
制作的时候移动的是底下那层. 电子束不移动.
就像打印机一样把底下打一遍.
好处是精度特别高, 目前大多数高精度的(<100nm技术)都用这个掩膜. 坏处是太慢...
做好掩膜后:
Feature Size = k*lamda / NA
k一般是0.4, 跟制作过程有关lamda是所用光的波长NA是从芯片看上去, 放大镜的倍率.
以目前的技术水平, 这个公式已经变了, 因为随着Feature Size减小, 透镜的厚度也是一个问题了
Feature Size = k * lamda / NA^2
恩.. 所以其实掩膜可以做的比芯片大一些. 至于具体制作方法, 一般是用高精度计算机探针 + 激光直接刻板. Photomask(掩膜) 的材料选择一般也比硅晶片更加灵活, 可以采用很容易被激光汽化的材料进行制作.
这个光刻的方法绝壁是个黑科技一般的点! 直接把Lamda缩小了一个量级, With no extra cost! 你们说吼不吼啊!
Food for Thought: Wikipedia上面关于掩膜的版面给出了这样一幅图, 假设用这样的掩膜最后做出来会是什么形状呢?
于是还没有人理Food for thought...
附图的步骤在每幅图的下面标注, 一共18步.
最终成型大概长这样:
其中, 步骤1-15 属于 前端处理 (FEOL), 也即如何做出场效应管
步骤16-18 (加上许许多多的重复) 属于后端处理 (BEOL) , 后端处理主要是用来布线. 最开始那个大芯片里面能看到的基本都是布线! 一般一个高度集中的芯片上几乎看不见底层的硅片, 都会被布线遮挡住.
SOI (Silicon-on-Insulator) 技术:
传统CMOS技术的缺陷在于: 衬底的厚度会影响片上的寄生电容, 间接导致芯片的性能下降. SOI技术主要是将 源极/漏极 和 硅片衬底分开, 以达到(部分)消除寄生电容的目的.
传统:
SOI:
制作方法主要有以下几种(主要在于制作硅-二氧化硅-硅的结构, 之后的步骤跟传统工艺基本一致.)1. 高温氧化退火:
在硅表面离子注入一层氧离子层
等氧离子渗入硅层, 形成富氧层
高温退火
成型.
或者是2. Wafer Bonding(用两块! )不是要做夹心饼干一样的结构吗? 爷不差钱! 来两块!
来两块!
对硅2进行表面氧化
对硅2进行氢离子注入对硅2进行氢离子注入
翻面
将氢离子层处理成气泡层将氢离子层处理成气泡层
切割掉多余部分切割掉多余部分
成型! + 再利用
光刻
离子注入离子注入
微观图长这样:
再次光刻+蚀刻
撤去保护, 中间那个就是Fin撤去保护, 中间那个就是Fin
门部位的多晶硅/高K介质生长门部位的多晶硅/高K介质生长
门部位的氧化层生长门部位的氧化层生长
长成这样
源极 漏极制作(光刻+ 离子注入)
初层金属/多晶硅贴片
蚀刻+成型
物理气相积淀长出表面金属层(因为是三维结构, 所有连线要在上部连出)
机械打磨(对! 不打磨会导致金属层厚度不一致)
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)