欢迎分享,转载请注明来源:内存溢出
特约撰稿 莫大康 推动半导体业进步有两个轮子,一个是工艺尺寸缩小,另一个是硅片直径增大,而且总是尺寸缩小为先。由半导体工艺路线图看,2013年应该进入14纳米节点,观察近期的报道,似乎已无异议,而且仍是英特尔挑起大樑。尽管摩尔定律快“寿终正寝”的声音已不容置辩,但是14nm的步伐仍按期走来,原因究竟是什么? 传统光刻技术与日俱进 当尺寸缩小到22/20nm时,传统的光刻技术已无能力,必须采用辅助的两次图形曝光技术。 提高光刻的分辨率有3个途径:缩短曝光波长、增大镜头数值孔径NA以及减少k1。显然,缩短波长是最主要的,而且方便易行。目前市场的193nmArF光源是首选,再加入浸液式技术等,实际上达到了28nm,几乎已是极限(需要OPC等技术的帮助)。 所以Fabless公司NVIDIA的CEO黄仁勋多次呼吁工艺制程在22/20nm时的成本一定相比28nm高。其理由是当工艺尺寸缩小到22/20nm时,传统的光刻技术已无能为力,必须采用辅助的两次图形曝光技术(DP)。从原理上讲,DP技术易于理解,甚至可以3次,或者4次。但是这样带来两个大问题,一个是光刻加掩模的成本迅速上升,另一个是工艺的循环周期延长。所以业界心知肚明,在下一代光刻技术EUV尚未到来之际,采用DP是不得已而为之,实际上在技术上的可行性并不是问题,更多的是要从经济层面做出取舍的决定。 193nm光刻技术在计算的光刻技术辅助下,包含两项关键的创新,一个是同时带OPC(光学图形修正)的两次图形曝光技术,另一个是采用一种倒转的光刻技术来改善困难的布局复制,可以在局部区域达到最佳化。 因此可以相信,传统的193nm浸液式光刻技术加上两次图形曝光技术(DP),甚至4次,从分辨率上在2015年时有可能达到10nm,这取决于业界对于成本上升等的容忍度。 7nm还是5nm 除了工艺尺寸缩小之外,产业尚有多条路可供选择,如450mm硅片、TSV 3D封装等。 何时能够达到7nm或者5nm,截至今日尚无人能够回答,因为EUV何时进入也不清楚。乐观的估计可能在2015年或2016年。如果真能如愿,可能从10nm开始就采用EUV技术,一直走到5nm。但是目前业界比较谨慎,通俗一点的说法仍是两条腿走路。在今年的Semicon West上各厂家的反应也是如此。Nikon正努力延伸193nm的浸液式技术,甚至包含450mm硅片而ASML由于获得英特尔、三星及台积电的支持,正加快NXE 3300B实用机型的发货。 据说已经有6台NXE 3100 EUV设备在客户处使用,累积产出硅片已达44000片。另外,下一代EUV设备NXE 3300B已开始安装调试,计划2013年共发货5台,另有11台NXE 3300B的订单在手及7台订单在讨论中。 ASML正在准备450mm光刻机,它是客户共同投资计划中的一部分。公司有信心将3台EUV的营收落实在2013年的销售额之中。 ASML在2013年展览会的演讲中详细描绘了业界期待已久的EUV光源路线图,近期Cymer公司已推出了专为ASML光刻机配置的40W极紫外(EUV)光源,工作周期高达每小时30片,并计划在2014年时NXE 3300B中的光源升级达到50W,相当于43WPH水平。而100W光源可能要等到2015年或2016年,相当于73WPH。至于何时出现250W EUV光源,至少目前无法预测,除非等到100W光源成功,并有出彩的表现。500W光源写进路线图中是容易的,但是未来能否实现还是个问题。 只要实现73WPH,可以认为EUVL已达到量产水平,因为与多次曝光技术相比,它的成本在下降。在10nm节点以下如果继续釆用MP多次曝光技术,则可能需要4x甚至8x的图形成像技术。 因为从理论上讲,硅晶格大小约0.5nm,通常大于10个晶格尺寸,即约5nm时,才可能有好的硅器件功能,所以可以认为5nm是工艺尺寸的最终极限。预测在2024年以后半导体产业可能发生革命性变化,电荷不再是传输信息的唯一载体,同时计算架构也可能发生革命。 另外,ASML、IMEC及Applied Materials等共同协作,认为采用EUV技术有可能达到小于7nm,由于EUV技术同样也可采用DP两次图形曝光技术来提高分辨率。 随着半导体产业的继续发展,之后的每一个工艺节点进步都要付出极大的代价,要求达到财务平衡的芯片产出数量巨大。现在市场上已很难找出几种能相容的产品,因此未来产业面临的经济层面压力会越来越大。然而除了尺寸缩小之外,产业尚有多条路可供选择,如450mm硅片、TSV 3D封装,FinFET结构与III-V族作沟道材料等,此外还有应用商店。而站在客户立场,他们并非知道芯片的内部构造,仅是需要价廉、实用,而又方便使用的电子终端产品。光刻之后腐蚀后的线宽。 单线的最小宽度。 也就是表示你的工艺线设备能做到什么程度附:特征尺寸即CPU表面电路的特征线宽,我们常说的130nm制程、90nm制程指的就是CPU的特征尺寸。特征尺寸越小,单位面积内的晶体管集成度就越高。 在微电子学中,特征尺寸通常指集成电路中半导体器件的最小尺寸,如MOS管的栅长,特征尺寸是衡量集成电路设计和制造水平的重要尺度,特征尺寸越小,芯片的集成度越高,速度越快,性能越好半导体能带理论 分析半导体能带理论,必须从能级,能带,禁带,价带,导带开始。因此分析如下: 能级(Enegy Level):在孤立原子中,原子核外的电子按照一定的壳层排列,每一壳层容纳一定数量的电子。每个壳层上的电子具有分立的能量值,也就是电子按能级分布。为简明起见,在表示能量高低的图上,用一条条高低不同的水平线表示电子的能级,此图称为电子能级图。能带(Enegy Band):晶体中大量的原子集合在一起,而且原子之间距离很近,以硅为例,每立方厘米的体积内有5×1022个原子,原子之间的最短距离为0.235nm。致使离原子核较远的壳层发生交叠,壳层交叠使电子不再局限于某个原子上,有可能转移到相邻原子的相似壳层上去,也可能从相邻原子运动到更远的原子壳层上去,这种现象称为电子的共有化。从而使本来处于同一能量状态的电子产生微小的能量差异,与此相对应的能级扩展为能带。 禁带(Forbidden Band):允许被电子占据的能带称为允许带,允许带之间的范围是不允许电子占据的,此范围称为禁带。原子壳层中的内层允许带总是被电子先占满,然后再占据能量更高的外面一层的允许带。被电子占满的允许带称为满带,每一个能级上都没有电子的能带称为空带。 价带(Valence Band):原子中最外层的电子称为价电子,与价电带。 导带(Conduction Band):价带以上能量最低的允许带称为导带。 导带的底能级表示为Ec,价带的顶能级表示为Ev,Ec与Ev之间的能量间隔称为禁带Eg。 半导体的导电作用是通过带电粒子的运动(形成电流)来实现的,这种电流的载体称为载流子。半导体中的载流子是带负电的电子和带正电的空穴。对于不同的材料,禁带宽度不同,导带中电子的数目也不同,从而有不同的导电性。例如,绝缘材料SiO2的Eg约为5.2eV,导带中电子极少,所以导电性不好,电阻率大于1012Ω·cm。半导体Si的Eg约为1.1eV,导带中有一定数目的电子,从而有一定的导电性,电阻率为10-3—1012Ω·cm。金属的导带与价带有一定程度的重合,Eg=0,价电子可以在金属中自由运动,所以导电性好,电阻率为10-6—10-3Ω·cm。
赞
(0)
打赏
微信扫一扫
支付宝扫一扫
亏损1.3亿!半导体封测龙头有着怎样的无奈?
上一篇
2023-04-25
日月新半导体苏州有限公司怎么样?
下一篇
2023-04-25
评论列表(0条)