提高激光器的调制带宽,可以采取以下措施:
①有源区采用应变(抵偿)多量子阱结构-量子阱激光器阱材料由于在平行于阱面方向受到双轴压应变和垂直于阱面方向的拉伸应变,其价带顶的重空穴能级上升,而且这种价带发生退简并,使电子从自旋轨道分裂带向重孔穴带的跃迁几率近似等于零,使室温下的俄歇复合几率减小,从而导致这种量子阱激光器的阈值电流下降,线宽增强因子减小以及弛豫振荡频率、调制带宽、微分增益系数显著提高。
②有源区p型掺杂 p型掺杂可减小穿过SCH区域时的空穴输运,这对高速量子阱器件是主要的限制p型掺杂可以得到非常高的微分增益,并且使量子阱中载流子的分布更加均匀。 若有源区Zn掺杂浓度接近1018cm-3时,其3dB带宽可达25GHz而且掺杂还可使器件的振荡频率增加到30GHz腔长为300μm此外,重掺杂还有利于降低线宽增强因子和进一步提高微分增益,这些都有利于提高器件的调制特性。
③降低电学寄生参数-为了降低高速激光器的电学寄生参数,尤其是寄生电容,可采用半绝缘Fe-InP再生长掩埋技术,同时还需减小电极面积采用自对准窄台面结构(SA -CM以减小器件的寄生电容。人们还常利用填充聚酰亚胺的方法来减小寄生电容。
④提高激光器内部光子浓度和微分增益-增加激光器腔内的光子浓度,可增加本征谐振频率。利用DFB结构使激射波长与增益峰波长为负失谐(-10nm可以提高微分增益,这些都可以增加-3dB调制带宽。 以上分析了限制半导体激光器高速调制特性的因素以及提高激光器调制带宽的途径,这些因素之间与其静态特性之间是相互影响的所以在设计高速激光器时,还需考虑其他特性,如阈值、温度特性等。
半导体激光治疗仪有体积小、成本低、使用寿命长、疗效显著等优点。所以说治疗效果确实不错才会被大家认可。对于以下效果显著:
1、消炎作用:
SUNDOM-300IB型半导体激光治疗仪能够激活或诱导T、B淋巴细胞或巨噬细胞产生细胞因子,通过淋巴细胞再循环而活化全身免疫系统,增强巨噬细胞的吞噬能力,提高非特异性免疫或特异免疫的作用,半导体激光照射可抑制或降低炎症止痛作用。
2、改善局部血液循环:
SUNDOM-300IB型半导体激光治疗仪激光直接照射血流减少的疼痛部位或间接照射支配此范围的交感神经节均可引起血流增加,促进致痛物质代谢,缓解疼痛。
3、激活脑内啡肽系统:
机体接受半导体激光照射后可增加脑肽代谢,使脑内类吗啡样物质释放加快,而缓角疼痛。
4、抑制神经系统传导:
半导体激光不仅抑制刺激的传导速度,亦抑制刺激的强度及冲动频率。激光对疼痛刺激引起的末梢神经冲动、传导速度、强度及冲动频率均有抑制的作用。
5、激活下行抑制系统:
激光照射刺激可上行性传导至脊髓后角,同时又激活下行抑制系统。
6、组织修复:
激光照射可促进新生血管生长和肉芽组织增生,刺激蛋白质合成。毛细血管是肉芽组织的基本成分之一,是完成伤口愈合的前提条件,肉芽组织毛细血管越丰富,组织供氧量越充分,有助于各种组织修复细胞的代谢和成熟,促进胶原纤维的产生、沉积和交联。
7、生物调节:
激光照射后,可增强机体的免疫功能,调节内分泌,对血液细胞还可达到双向调节作用。
1、半导体激光治疗仪,半导体激光治疗仪也叫光量子激光治疗仪,是因为激光是可见光且都带有一定的能量,由此产生的粒子流就称为光量子激光。
2、半导体激光治疗仪与传统的治疗仪结构不同,由于半导体激光治疗仪的电光转换率远高于传统的激光治疗仪,出光率高,不产生多余的热量用低电压工作,不需要高电源不需冷却,淘汰了水循环冷却装置,也避免了传统激光器经常因高热使闪光灯、激光棒损坏、水循环故障或高电压问题而引起的停机半导体激光治疗仪具有体积小,成本低,使用寿命长,疗效显著等优点。
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)