利用什么可制成半导体光敏电阻

利用什么可制成半导体光敏电阻,第1张

光敏电阻是采用半导体材料制作,利用内光电效应工作的光电元件。它在光线的作用下其阻值往往变小,这种现象称为光导效应,因此,光敏电阻又称光导管。所以用的半导体,而常见的半导体就是单晶硅

半导体光敏元件是基于半导体光电效应的光电转换传感器,又称光电敏感器。采用光、电技术能实现无接触、远距离、快速和精确测量,常用来间接测量能转换成光量的其他物理或化学量。半导体光敏元件有灵敏度、探测率、光照率、光照特性、伏安特性、光谱特性、时间和频率响应特性以及温度特性等,它们主要由材料、结构和工艺决定。

mems工艺和半导体工艺的区别:

1、MEMS加工技术工艺是根据产品需要,在各类衬底(硅衬底,玻璃衬底,石英衬底,蓝宝石衬底等等)制作微米级微型结构的加工工艺。而ic工艺则侧重于半导体器件的制作,其衬底基本以硅衬底为主,少数特殊器件会使用GaAs/GaN等材料,其工艺核心是为了制作高集成度的各类器件,目前已经做到纳米级,特征尺寸更加精细。MEMS加工技术工艺制作的微型结构主要是作为各类传感器和执行器等,其中更加器件原理需要而制作的可动结构(齿轮,悬臂梁,空腔,桥结构等)以及各种功能材料,本质上是将环境中的各种特征参数(温度,压力,气体,流量等等)变化通过微型结构转化为各种电信号(电压,电阻,电流等)的差异,以实现小型化高灵敏的传感器和执行器。

2、半导体工艺指半导体制造工艺,工艺过程多晶硅到区熔或直拉到单晶硅棒到滚、切、磨、抛到硅片,硅片是一种硅材料通过加工切成一片一片的。硅是一种硬度很高的物质,硅材料看起来像石头一样,他要经过清洗干净然后用炉子加热融化形成一个大块的硅锭,然后再用特定机器来进行细切成一片一片。

透明导电薄膜。虽然目前电阻率等性能仍较低,但由于材料成本低、制造工艺简单,因此有望替代ITO用作液晶显示器等的透明导电薄膜。空心阴极法生长半导体薄膜.以非晶态半导体材料为主体制成的固态电子器件。非晶态半导体虽然在整体上分子排列无序,但是仍具有单晶体的微观结构,因此具有许多特殊的性质。1975年,英国W.G.斯皮尔在辉光放电分解硅烷法制备的非晶硅薄膜中掺杂成功,使非晶硅薄膜的电阻率变化10个数量级,促进非晶态半导体器件的开发和应用。同单晶材料相比,非晶态半导体材料制备工艺简单,对衬底结构无特殊要求,易于大面积生长,掺杂后电阻率变化大,可以制成多种器件。非晶硅太阳能电池吸收系数大,转换效率高,面积大,已应用到计算器、电子表等商品中。非晶硅薄膜场效应管阵列可用作大面积液晶平面显示屏的寻址开关。利用某些硫系非晶态半导体材料的结构转变来记录和存储光电信息的器件已应用于计算机或控制系统中。利用非晶态薄膜的电荷存储和光电导特性可制成用于静态图像光电转换的静电复印机感光体和用于动态图像光电转换的电视摄像管的靶面。具有半导体性质的非晶态材料。非晶态半导体是半导体的一个重要部分。50年代B.T.科洛米耶茨等人开始了对硫系玻璃的研究,当时很少有人注意,直到1968年S.R.奥弗申斯基关於用硫系薄膜制作开关器件的专利发表以后,才引起人们对非晶态半导体的兴趣。1975年W.E.斯皮尔等人在硅烷辉光放电分解制备的非晶硅中实现了掺杂效应,使控制电导和制造PN结成为可能,从而为非晶硅材料的应用开辟了广阔的前景。在理论方面,P.W.安德森和莫脱,N.F.建立了非晶态半导体的电子理论,并因而荣获1977年的诺贝尔物理学奖。目前无论在理论方面,还是在应用方面,非晶态半导体的研究正在很快地发展著。分类目前主要的非晶态半导体有两大类。硫系玻璃。含硫族元素的非晶态半导体。例如As-Se、As-S,通常的制备方法是熔体冷却或汽相沉积。四面体键非晶态半导体。如非晶Si、Ge、GaAs等,此类材料的非晶态不能用熔体冷却的法来获得,只能用薄膜淀积的法(如蒸发、溅射、辉光放电或化学汽相淀积等),只要衬底温度足够低,淀积的薄膜就是非晶态结构。四面体键非晶态半导体材料的性质,与制备的工艺方法和工艺条件密切相关。图1不同方法制备非晶硅的光吸收系数给出了不同制备工艺的非晶硅光吸收系数谱,其中a、b制备工艺是硅烷辉光放电分解,衬底温度分别为500K和300K,c制备工艺是溅射,d制备工艺为蒸发。非晶硅的导电性质和光电导性质也与制备工艺密切相关。其实,硅烷辉光放电法制备的非晶硅中,含有大量H,有时又称为非晶的硅氢合金;不同工艺条件,氢含量不同,直接影响到材料的性质。与此相反,硫系玻璃的性质与制备方法关系不大。图2汽相淀积溅射薄膜和熔体急冷成块体AsSeTe的光吸收系数谱给出了一个典型的实例,用熔体冷却和溅射的法制备的AsSeTe样品,它们的光吸收系数谱具有相同的曲线。非晶态半导体的电子结构非晶态与晶态半导体具有类似的基本能带结构,也有导带、价带和禁带(见固体的能带)。材料的基本能带结构主要取决於原子附近的状况,可以用化学键模型作定性的解释。以四面体键的非晶Ge、Si为例,Ge、Si中四个价电子经sp杂化,近邻原子的价电子之间形成共价键,其成键态对应於价带;反键态对应於导带。无论是Ge、Si的晶态还是非晶态,基本结合方式是相同的,只是在非晶态中键角和键长有一定程度的畸变,因而它们的基本能带结构是相类似的。然而,非晶态半导体中的电子态与晶态比较也有著本质的区别。晶态半导体的结构是周期有序的,或者说具有平移对称性,电子波函数是布洛赫函数,波矢是与平移对称性相联系的量子数,非晶态半导体不存在有周期性,不再是好的量子数。晶态半导体中电子的运动是比较自由的,电子运动的平均自由程远大於原子间距;非晶态半导体中结构缺陷的畸变使得电子的平均自由程大大减小,当平均自由程接近原子间距的数量级时,在晶态半导体中建立起来的电子漂移运动的概念就变得没有意义了。非晶态半导体能带边态密度的变化不像晶态那样陡,而是拖有不同程度的带尾(如图3非晶态半导体的态密度与能量的关系所示)。非晶态半导体能带中的电子态分为两类:一类称为扩展态,另一类为局域态。处在扩展态的每个电子,为整个固体所共有,可以在固体整个尺度内找到;它在外场中运动类似於晶体中


欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/dianzi/9185778.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-04-25
下一篇 2023-04-25

发表评论

登录后才能评论

评论列表(0条)

保存