p型和n型si的划分是以杂质掺杂以后的载流子类型划分的,如果是空穴导电为p型,电子导电为n型
当pn结正向接通的时候(p-si接正电位),在电场作用下n-si的电子被吸向正极,p-si的空穴被吸向负极形成电流.
如果pn结反接(n-si接正极),此时反向偏压阻止载流子的流动,故pn结不能形成电流流动.
这仅是很粗略的大致的解释,
如果真感兴趣还是建议看一下半导体器件物理的专门书籍
补充:加反向偏压时有很小的反向漏电流,大小是一个恒定值.
反压时加强了pn结势垒区的内建电场,更强地阻止了多子载流子的流动.这时反向电流是由p、n区的少子漂移形成,由于少子的数量级比多子少许多数量级,所以反向电流比正向电流少很多,近似处理可以认为反向不导通。
PN结是由一个N型掺杂区和一个P型掺杂区紧密接触所构成的,其接触界面称为冶金结界面。
在一块完整的硅片上,用不同的掺杂工艺使其一边形成N型半导体,另一边形成P型半导体,我们称两种半导体的交界面附近的区域为PN结。
在P型半导体和N型半导体结合后,由于N型区内自由电子为多子空穴几乎为零称为少子,而P型区内空穴为多子自由电子为少子,在它们的交界处就出现了电子和空穴的浓度差。
扩展资料:
相关特性:
从PN结的形成原理可以看出,要想让PN结导通形成电流,必须消除其空间电荷区的内部电场的阻力。很显然,给它加一个反方向的更大的电场,即P区接外加电源的正极,N区结负极,就可以抵消其内部自建电场,使载流子可以继续运动,从而形成线性的正向电流。
而外加反向电压则相当于内建电场的阻力更大,PN结不能导通,仅有极微弱的反向电流(由少数载流子的漂移运动形成,因少子数量有限,电流饱和)。
当反向电压增大至某一数值时,因少子的数量和能量都增大,会碰撞破坏内部的共价键,使原来被束缚的电子和空穴被释放出来,不断增大电流,最终PN结将被击穿(变为导体)损坏,反向电流急剧增大。
这就是PN结的特性(单向导通、反向饱和漏电或击穿导体),也是晶体管和集成电路最基础、最重要的物理原理,所有以晶体管为基础的复杂电路的分析都离不开它。
参考资料来源:百度百科-PN结
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)