要理解这个现象,你先得知道能带的成因:晶体是由大量的原子有序堆积而成的。由原子的
电子轨道的数量非常之大,使得原子能级发生简并,在能级两边扩展,原子数越多扩展越厉害,使得原来两能级间距离即带隙减小。然而在纳米材料,原子数少,则原子的电子轨道的数量就很少,后面你懂的。ZnS是一种直接带隙的半导体材料,具有闪锌矿和纤锌矿两种结构,禁带宽度为3.6~3.8eV,它具有良好的光电性能,广泛应用于各种光学和光电器件中,如薄膜电致发光显示器件、发光二极管、紫外光探测器件、太阳能电池等。传统的化合物薄膜太阳能电池,一般采用化学浴法制备的CdS薄膜作为缓冲层材料,并且已经获得了较高的电池转换效率。后来人们逐渐意识到CdS是一种对环境和人体有害的材料,要研究制备无污染的太阳能电池就该寻找新的材料作为替代。在以后的研究中人们慢慢发现ZnS是替代CdS的良好的材料。首先,ZnS不含任何有毒元素,满足了人们环保的要求;其次,ZnS(3.6~3.8eV)的禁带宽度比CdS(2.4eV)大得多,用它作缓冲层材料可以使更多的短波区的光照射到吸收层上,有利于获得蓝光区的光谱响应,提高太阳能电池的转换效率。Cu(InGa)Se2/ZnS结构电池转换效率已经达到18.6%,而CuInS2/ZnS结构电池转换效率也已达到了10.7%。(CuInS2是I-III-vI)族化合物中最理想的吸收层材料,其理论光电转换效率为27%--32%)希望你能满意!为了回答这个问题,需要先补充一些概念。在半导体中,电子分布在“能带”上。在低温、不受到任何激发的时候,电子分布在“价带”上,处于基态。而受到激发(比如光激发)后电子就会吸收
能量,如果吸收的能量量子(比如说光子)的能量大于半导体的带隙(或者叫禁带宽度),电子就可以
跃迁到“导带”上,处于激发态,而同时由于电子的跃迁,在价带中就留下了一个空的位置,称为“空穴”。价带的最高能级与导带的最低能级之间的部分就是禁带,其能量差就是半导体的带隙,在禁带中,除非有能量陷阱,否则电子是无法在禁带中分布的。电子要么在价带分布(基态),要么在导带分布(激发态)。而在导带中的电子是一种高能量且不稳定的存在,它会设法跃迁回到基态,并在这个过程中释放出能量。如果是直接带隙半导体,则能量就可以以光子的形式辐射出来,形成发光;如果是间接带隙半导体,则发光辐射的概率就很小,能量多会以弛豫的形式释放出来。
而半导体纳米材料的光催化特性就是源自于半导体材料会吸收光能,电子跃迁到高能态上。但仅仅如此还不能产生催化的效果。纳米的尺度也是至关重要的,纳米的尺度主要为其提供了一下性质:1、为材料提供了巨大的比表面积,可以让它与被催化的物质有充分的接触面积,提高催化的效率;2、纳米尺度带来的量子限域效应,使得电子被激发起来以后,与空穴形成的“载流子对”无法被分散,相当于把能量集中在了纳米尺寸的范围之内,提高了纳米材料表面的能量密度;3、纳米材料由于巨大的表面张力的存在,表面能非常高。这些因素就使得被催化的物质不仅可以大量吸附于纳米材料之上,且当纳米材料被光激发时,能量可以很方便地被传递到被催化物上。半导体纳米材料先吸收光能,电子发生跃迁、与空穴分离,在电子跃迁回基态的过程中释放出能量,这部分能量可以有效传递给吸附于纳米材料表面的待催化物质,这样那些待催化的物质就获得了能量,称为“敏化”。被敏化以后,原本难以发生的反应就会由于获得了更高的能量而变得容易起来。这就实现了光催化。
评论列表(0条)