经过40多年的空间探索,齐奥尔科夫斯基的预言得到了证实:“人类不会永远停留在地球。”为了把人类的活动舞台扩展到其他星球,为了利用空间并造福人类,月球必然是人类注目的第一个星球,研究、开发月球对人类有很多好处。
月球上有丰富的矿产。航天员登月时,已经发现月球上有极大储量的钛及其他矿产。利用月球矿产,可以非常便宜地制造航天飞行器硬件,而且从月球发射物体要比从地球发射容易许多,因为月球引力远比地球引力小,又无空气,航天器射离月球无须克服空气阻力。例如,从月球发射一个高度近地轨道的有效载荷所需总能量比在地球上发射同样重量所需能量小20~30倍;又如航天飞机的载荷只占整个发射重量的1?5%,如果用同样的运载工具从月球发射,其有效载荷可占总发射质量的50%。一旦月球获得开发,月球能作为人类飞往其他行星的理想基地。
月球若在太阳系内建立大型太空站,或太空居民点,开发月球资源以供需求是最经济的途径。有许多人预言,去太空居住和生产是人类活动的下一个主要领域。当太空侨居区出现时,不可能再依赖地球上的经济支持和物资供应,而必须建造空间生产基地,利用地球以外资源发展工业。月球是提供这种资源的宝库。
自从美国“阿波罗”登月计划完成之后,经过30多年的沉寂,人们又在热烈谈论开发月球的事情了,很多科学家还提出建立月球基地的建议。1989年7月,美国时任总统布什还曾宣布要把月球作为人类飞往火星的基地,并打算于2005年正式破土动工。看来,在未来几十年内,开发月球、建立月球基地是势在必行和一定要做的事了。
展望航天未来空间技术的迅速发展,导致人类外空活动的日益扩大,已经把建造大型航天站、太阳能电站、太空工厂和空间居民点的任务放到了科学家的面前。但是,要实现这些目标,需要大批原材料,如果从地球向宇宙空间运送,费用非常昂贵,终非长久之计。因此,寻找地球外的材料来源,例如从月球和小行星获取材料,以及降低它们的运输费用,就成为发展空间工业生产,建造航天站和太空居民点的关键。
远在“阿波罗”飞船登月的历次航行中,航天员曾从月球带回许多月球岩石样品和尘土。经过分析表明,它们主要由40%的氧、30%的硅和20%~30%的各种金属元素如铝、钛、锰、铁等组成。金属元素经加工后的基本构件可用于制造各大型航天站;硅是玻璃、陶瓷与半导体的基本材料,可用于制造光学和电子元件;氧则供给居民需要。因此,月球确实是地球之外的资源宝库与材料来源。月球的低重力环境又为低成本运送月球材料到宇空间提供了保证。月球上的重力仅仅是地球重力的1/6,把材料运往空间所需的脱离速度很小,只有2?31千米/秒。再加上月球上无空气,不存在空气阻力,所以从月球射离物体比在地球射离容易许多。这就是科学家们提出开发月球,建立月球基地的主要需求背景。
人类要开发月球并从其上获取丰富的资源,还得先建造月球基地;作为先导,很可能不是直接建造为开发资源的月球基地,而是建造月球宇航基地,用以向宇宙空间射离物体以及为人类飞往火星作准备。建设这些基地的材料何处来?如果是从地球运来,其代价是非常高的。
科学家提出,在月球上建造一个宇航循环基地需1000吨水泥、330吨水和3600吨钢筋,若将这些材料从地面运往月球,每吨需耗资5000万美元,显然太昂贵了。材料学家对月球岩样进行分析和试验后认为,只要把氢带上月球就可把月球上的岩石变为最理想的建筑材料。月球表面钛铁含量极为丰富,这些矿物被加热至800摄氏度后与氢结合会产生铁、钛、氧气和蒸汽。在此过程中产生人类生存所必需的水和氧气。月球岩石可精炼成轻型和坚固的水泥,剩下的铁矿可用来冶炼钢筋。这种月球岩石同其他小行星的组成物质相似,已经在茫茫宇宙中存在了许多亿年,不但能抵挡太阳射线对其粒子的辐射,还能经受极大的温差考验。材料科学家利用航天员带回地面的月球岩石样品制成了一块目前世界上无法同它相比的最强硬、最坚固、最富d性的混凝土。
这种混凝土是唯一能在气候异常的月球屹立的建筑材料。在月球上生产每千克这种品质的混凝土只需氢3克,而且只要具有总重量约200吨的机械钻探设备就可投入月球物质的挖掘。化学科学家设计了许多从月球岩土中提取纯净元素的方案,包括利用太阳能加热月球物质的物理分离法以及利用氢氟酸之类的试剂从氧化物中取得氧、硅和金属的化学分离法,每个加工厂设计得能循环使用试剂和废料的齐全生产单位。一个只有1吨重的小小的试验性化工厂,每年可将十几吨月球物质加工成氧、金属和玻璃。因此,科学家认为,建设月球基地的基本材料不必从地球运去,可以就地取材。待月球基地建成后,可以大规模开发月球,建造月球工厂,并把大批材料通过宇航基地射离月球,输往地球轨道和太阳系空间,用以建造各种大规模航天站,并为太空工业提供原料,为太空居民城镇建设供应建材。
月球上的尘土确实非常有用,用它还可烧制房屋的砖、瓦和管道;利用尘土覆盖航天员居住点和月球实验室,可使他们免受宇宙射线、太阳耀斑的侵害,近2米厚的月球尘土可使航天员获得与地球相同的对宇宙射线的防护机制。开发月球,建设月球基地不仅是可能的,而且是人类在地球外开拓疆域必然要做的一项工作。
开发月球还能使它成为人类未来从事科学研究的前哨阵地。在那里,科学家不仅能够直接研究月球的种种特性及其演化过程,而且也可能是唯一揭开地球早期史奥秘的地方。例如,研究它的矿物构造过程,可以和地球比较。利用月球无空气、低重力、自转速度慢和环境幽静的特点,有可能在物理学、化学、生物学和其他科学方面进行唯一性实验;在月球上进行天文学与天体物理的研究比在地球更具优越性。对人类社会来说,开发月球会使它显得日益重要起来。
从天文学角度考虑,地球日益严重的污染,影响天文观测。月球背面提供了最佳天文观测位置,因为那里总是背离地球,可以完全隔开上述干扰。在月球上还可以进行月球和行星科学、天文学、物理学、化学、生命科学等种种科学研究。
综上所述,研究月球对人类的未来有重大意义。当然,要在月球创建居住地和基地,还有许多问题和困难需要解决,并且要大量投资。但开创空间时代30余年的成功使人们确信,月球注定会成为人类活动的场所,随着空间技术的改进以及在空间制造硬件便宜,投资也不会太大;如果进行国际合作,每个国家分担的费用更不会高。有科学家预言,在未来1~2个世纪,月球基地必将成为人类生存和发展的新疆域。
随着科学技术的发展,人们已一只脚迈进了智能 社会 的门槛,大量智能电子产品随处可见。随着 社会 智能化的发展,芯片的地位越来越重要,已成为手机、电脑、智能 汽车 。航天、物联网等行业发展的基础。
众所周知,我国进入半导体行业较晚,技术积累薄弱,国内企业在发展的过程中,太过于注重品牌知名度的提升,将大部分精力投入到了轻资产行业的发展,忽视了重资产行业的重要性,再者就是西方国家为了限制我国 科技 的崛起,早在几十年前就签订了《瓦森堡协定》,禁止向我国出口高尖端技术。受多种因素的影响,国内企业发展所需的芯片大部分从西方国家进口。
芯片过于依赖进口,对我国 科技 的发展而言真的不是一件好事,华为的遭遇就是很好的证明!
2020年5月,美国为了绞杀华为,突然修改世界半导体行业规则,禁止全球使用美国技术超过10%的半导体企业与华为合作,直接引发了华为的芯片危机,业务发展受到了很大的影响,如手机业务,已从世界第一大手机厂商的宝座跌落,今年第一季度国内市场份额从44%暴跌至16%,海外市场份额从去年的18.9%跌落至4%。
美国之所以欲将华为置之死地而后快,并不全是因为华为在5G通信领域打破了高通等美企的垄断,成为通信领域新的领头羊,主要是因为华为强大的研发能力!
据公开资料显示,华为凭借着58990项专利,成为了世界上拥有专利最多的 科技 公司。除此之外,不但在通信、手机领域取得了不凡的成就,其在芯片、自动驾驶、 *** 作系统、存储、人工智能、云计算等领域都达到了世界顶级的水准。
华为凭借一己之力,与高通、苹果、谷歌等美国多家行业老牌巨头斗得不亦乐乎,让世界各国重新认识了中国 科技 的力量与魅力,如此强大的华为,怎么可能不引起一向自以为是的美国的恐慌?为了不影响自己主导全球的计划,美国怎么可能让其继续发展下去?
2019年5月,美国以莫须有的罪名将华为列入“实体清单”,禁止美企与之合作。美国集全国之力、集盟友之力对华为长达一年的打压,不但没有将其打倒,反而让他变得更加强大。这一情况的出现,让美国很是恐慌,不得不使出杀手锏,芯片封锁!
美国的芯片封锁,让华为迎来了有史以来最大的生存危机,也让我们意识到, 在当今这个时代,要想摆脱被人鱼肉的命运,就必须实现技术独立,实现芯片的国产化,彻底打破封锁!
当前主流的芯片是硅基芯片,是从一堆堆沙子中提取中纯度高达99.999%的硅晶圆,然后再经过设计、光刻、蚀刻、封装、测试等一系列复杂的流程,最终才能被应用在电子产品上。
在芯片制造全部工序中,光刻是我国芯片制造的短板,究其原因就是EUV光刻机被卡了脖子,而国产的光刻机仅达到了28nm级别。
或许有的人会说,几十年前,我国原子d都能造出来,现在造一个EUV光刻机有什么难的?事实上,我们短时间内还真的造不出来EUV光刻机,尽管中科院、清华大学等科研机构突破了很多EUV技术。
EUV光刻机不仅需要大量非常高尖端技术,还需要大量的元器件。 据ASML公司EUV光刻机总工程师透露,制造EUV光刻机所需的元器件超过10万件,来自世界上36个国家的1500多家企业,每一件都代表着业内的最高水平。值得一提的是,在ASML公司制造的EUV光刻机中,没有一件核心元器件来自我国企业。 由此可见,要想独自制造出EUV光刻机,我们将要克服多少困难。简单点说,我们要想独自制造出EUV光刻机,就必须将我们的基础工业水平达到西方国家基础工业水平的总和。
所以,我们要想短时间内打破芯片封锁,解决芯片被卡脖子的问题,我们必须另辟蹊径。所幸的是,中科院院士已经找到了这个“捷径”!
前不久,中科院院士、中科大教授郭光灿领导的科研团队在光量子芯片方面取得重大突破,成功掌握量子干涉核心问题的技术,这一重大技术突破,直接奠定了光量子芯片研制的技术基础。 中国院士团队的这一重大技术突破,让世界上唯一的超级 科技 强国美国震惊不已: 没想到中国科研人员会在这么短的时间内掌握光量子芯片技术。
要知道,我国是属于芯片行业起步较晚的国家,技术和人才储备都很薄弱,我们要想实现在光量子芯片领域的领先,付出的汗水将是发达国家科研人员的几百倍!
对于中科院院士团队在光量子芯片领域实现的重大技术突破,不少业内人士纷纷发表自己的看法: 一旦光量子芯片实现大规模量产,芯片的成本要比现在的芯片要低,而且中国也将会掌握芯片领域的主导权,华为的“芯”病也将会得到彻底根治!
不少网友心中看到这心中会有个疑惑,我快把光量子芯片吹上天了,那么,它到底是个啥东西呢?又具有什么特殊的能力呢?
所谓的光量子芯片, 就是用光子代替传统芯片的电子,通过光源能量和形状控制手段,将光投射线路经过光学补差,将设计好的线路图映射到晶片上。
芯片整体性能是否先进,与晶片上集成的晶体管数量有关,要想芯片性能更先进,就必须在固定大小的晶片上尽可能的集成更多的晶体管。
光量子芯片与传统硅芯片相比,其采用微纳米加工工艺、以光为载体,其数据传输能力更强、更稳定,而且信息储存的时间也会更久等等。
随着5G时代的到来,我们即将从互联网时代迈入物联网时代,我们对数据处理的速度的要求也会更高,传统芯片很可能无法满足我们这方面的需求,所以,更为先进的光量子芯片成为了我们在物联网时代的不二选择。
对于光量子芯片的发明,不少业内人士认为,其重要性不亚于计算机的发明,谁率先掌握了这种技术,谁就可以领跑一个新的时代!
笔者坚信,随着我国科研人员的不断付出,我们必将能在短时间内攻克光量子芯片所有技术难关,实现大规模量产,打破美国的芯片封锁,成为新时代的领跑者!
美、日将联手研发2nm芯片
美、日将联手研发2nm芯片,日美两国将启动次世代芯片(2纳米芯片)的量产研发,力拼在2025年量产,此时间点也与台积电、三星所喊出的2纳米目标一致。美、日将联手研发2nm芯片。
美、日将联手研发2nm芯片1目前全球能做到2nm工艺的公司没有几家,主要是台积电、Intel及三星,日本公司在设备及材料上竞争力有优势,但先进工艺是其弱点,现在日本要联合美国研发2nm工艺,不依赖台积电,最快2025年量产。
日本与美国合作2nm工艺的消息有段时间了,不过7月29日日本与美国经济领域有高官会面,2nm工艺的合作应该会是其中的重点。
据悉,在2nm工艺研发合作上,日本将在今年内设立次世代半导体制造技术研发中心(暂定名),与美国的国立半导体技术中心NSTC合作,利用后者的设备和人才研发2nm工艺,涉及芯片涉及、制造设备/材料及生产线等3个领域。
这次的研发也不只是学术合作,会招募企业参加,一旦技术可以量产,就会转移给日本国内外的企业,最快会在2025年量产。
对于日美合作2nm并企图绕过台积电一事,此前台积电方面已有回应,台积电称,半导体产业的特性是不管花多少钱、用多少人,都无法模仿的,要经年累月去累积,台积电20年前技术距最先进的技术约2世代,花了20年才超越,这是坚持自主研发的结果。
台积电不会掉以轻心,研发支出会持续增加,台积电3nm制程将会是相当领先,2nm正在发展中,寻找解决方案。
美、日将联手研发2nm芯片2现在全球最先进的芯片约有9成是由台积电生产,各国想分散风险以确保更稳定的供应,像是日本与美国将在半导体产业进行合作,日经新闻29日报道,日美两国将启动次世代芯片(2纳米芯片)的量产研发,力拼在2025年量产,而此时间点也与台积电、三星所喊出的2纳米目标一致。
报道指出,日美强化供应链合作,日本将在今年新设一个研发据点,其为和美国之间的窗口,并将设置测试产线,值得注意的是,日美也将在本月29日,于华盛顿首度召开外交经济阁僚协议“经济版2+2”,上述2纳米合作将纳入该协议的联合声明。
报道提到,日本将在今年新设次世代半导体制造技术研发中心,并将活用美国国立半导体技术中心的设备和人才,着手进行研发。因美国拥有Nvidia、高通等企业,而在芯片量产不可或缺的.设备、材料上,日本企业包括东京威力科创、Screen Holdgins、信越化学、JSR等拥有很强的竞争力,为日美合作奠下基础。
报道称,全球10纳米以下芯片产能,台湾市占率高达9成,台湾企业也计划在2025年开始生产2纳米芯片,不过日美忧心台海冲突恐升高,两国的目标是即便“台湾有事”,也能确保先进芯片的供应数量。
美、日将联手研发2nm芯片3据媒体报道,日美两国将通过经济协商,就确保新一代半导体安全来源的共同研究达成协议。7月29日,日本外务大臣林吉正(Yoshimasa Hayashi)和贸易大臣萩生田光一(Koichi Hagiuda)将在华盛顿与美国国务卿布林肯(Antony Blinken)和商务部长雷蒙多(Gina Raimondo)举行第一轮经济“二加二”会谈,预计供应链安全将是一个主要议题。
据悉,日本将于今年年底建立一个联合研发中心“新一代半导体制造技术开发中心(暂定名)”,用于研究2纳米半导体芯片。该中心将包括一条原型生产线,并将于2025年开始量产半导体。建立该中心的协议将列入会议结束后发表的声明中。报道还表示,产业技术综合研究所、理化学研究所、东京大学将是新中心的参与者之一,其他企业也可能被邀请参与。
从产业链来看,美国和日本在半导体领域中有很强的互补性。上世纪80-90年代,日本半导体在美国的打压之下,其半导体制造环节基本从全球半导体制造格局中退出,转而布局上游半导体材料和设备。目前日本在半导体材料和半导体设备领域两大环节拥有优势,特别是半导体材料领域的“垄断”地位。
代表性企业为大硅片(日本信越、Sumco)、掩膜版(日本DNP、Toppan)、光刻胶(日本JSR、东京应化、富士电子材料)、溅射材料(日矿金属、日本东曹、住友化学等)。
美国则在半导体设备业在全球同样处于垄断地位,拥有除光刻机以外几乎所有的设备生产能力,如应用材料。在EDA工具、IP及计算光刻软件等领域,美国处于绝对垄断地位,主要为Cadence、Synopsys、Siemens EDA三大巨头垄断。
整体来看,美国和日本在半导体材料、设备、设计领域占据优势,加之两国“紧密”的政治关系,在先进芯片工艺研发上有先天的优势与基础。在很大程度上,对美国提出“四方芯片联盟”,美日两国有最“坚定”的政治可能和经济基础。
至于为什么急于发展2纳米先进工艺,主要有以下两点:一是芯片是所有高科技产业的“底座”,是综合国力竞争的制高点,加之疫情以来的芯片短缺,让美日进一步认识到半导体制造的重要性;二是东亚晶圆代工实力强劲,规模庞大,除了台积电、三星之外,中国大陆芯片代工发展迅速,比如中芯国际、华虹半导体;三是推动高端产业链本土化回迁,掌控科技竞争主动权。
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)