晶体管结构的边缘效应有哪些

晶体管结构的边缘效应有哪些,第1张

(一)晶体管的结构特性

1.晶体管的结构  晶体管内部由两PN结构成,其三个电极分别为集电极(用字母C或c表示),基极(用字母B或b表示)和发射极(用字母E或e表示)。晶体管的两个PN结分别称为集电结(C、B极之间)和发射结(B、E极之间),发射结与集电结之间为基区。

根据结构不同,晶体管可分为PNP型和NPN型两类。在电路图形符号上可以看出两种类型晶体管的发射极箭头(代表集电极电流的方向)不同。PNP型晶体管的发射极箭头朝内,NPN型晶体管的发射极箭头朝外。

2.三极管各个电极的作用及电流分配  晶体管三个电极的电极的作用如下:

发射极(E极)用来发射电子;

基极(B极)用来控制E极发射电子的数量;

集电极(C极)用业收集电子。

晶体管的发射极电流IE与基极电流IB、集电极电流IC之间的关系如下:IE=IB+IC

3.晶体管的工作条件  晶体管属于电流控制型半导体器件,其放大特性主要是指电流放大能力。所谓放大,是指当晶体管的基极电流发生变化时,其集电极电流将发生更大的变化或在晶体管具备了工作条件后,若从基极加入一个较小的信号,则其集电极将会输出一个较大的信号。

晶体管的基本工作条件是发射结(B、E极之间)要加上较低的正向电压(即正向偏置电压),集电结(B、C极之间)要加上较高的反向电压(即反向偏置电压)。

晶体管发射结的正向偏置电压约等于PN结电压,即硅管为0.6~0.7V,锗管为0.2~0.3V。集电结的反向偏置电压视具体型号而定。

4.晶体管的工作状态  晶体管有截止、导通和饱和三种状态。

在晶体管不具备工作条件时,它处截止状态,内阻很大,各极电流几乎为0。

当晶体管的发射结加下合适的正向偏置电压、集电结加上反向偏置电压时,晶体管导通,其内阻变小,各电极均有工作电流产生(IE=IB+IC)。适当增大其发射结的正向偏置电压、使基极电流IB增大时,集电极电流IC和发射极电流IE也会随之增大。

当晶体管发射结的正向偏置电压增大至一定值(硅管等于或略高于0.7V,锗管等于或略高于0.3V0时,晶体管将从导通放大状态进入饱和状态,此时集电极电流IC将处于较大的恒定状态,且已不受基极电流IB控制。晶体管的导通内阻很小(相当于开关被接通),集电极与发射极之间的电压低于发射结电压,集电结也由反偏状态变为正偏状态。

(二)高频晶体管

高频晶体管(指特征频率大于30MHZ的晶体管)可分为高频小功率晶体管和高频大功率晶体管。

常用的国产高频小功率晶体管有3AG1~3AG4、3AG11~3AG14、3CG3、3CG14、3CG21、3CG9012、3CG9015、3DG6、3DG8、3DG12、3DG130、3DG9011、3DG9013、3DG9014、3DG9043等型号,部分国产高频小功率晶体管的主要参数。

常用的进口高频小功率晶体管有2N5551、2N5401、BC148、BC158、BC328、BC548、BC558、9011~9015、S9011~S9015、TEC9011~TEC9015、2SA1015、2SC1815、2SA562、2SC1959、2SA673、2SC1213等型号。 

  2.高频中、大功率晶体管  高频中、大功率晶体管一般用于视频放大电路、前置放大电路、互补驱动电路、高压开关电路及行推动等电路。

常用的国产高频中、大功率晶体管有3DG41A~3DG41G、3DG83A~3DG83E、3DA87A~3DA87E、3DA88A~3DA88E、3DA93A~3DA93D、3DA151A~3DG151D、3DA1~3DA5、3DA100~3DA108、3DA14A~3DA14D、3DA30A~3DA30D、3DG152A~3DG152J、3CA1~3CA9等型号。表5-3是各管的主要参数。

常用的进口高频中、大功率晶体管有2SA634、2SA636、2SA648A、2SA670、2SB940、2SB734、2SC2068、2SC2258、2SC2371、2SD1266A、2SD966、2SD8829、S8050、S8550、BD135、BD136等型号。

(三)超高频晶体管

超高频晶体管也称微波晶体管,其频率特性一般高于500MHZ,主要用于电视、雷达、导航、通信等领域中处理微波波段(300MHZ以上的频率)的信号。

1.国产超高频晶体管  常用的国产超高频晶体管有3AG95、3CG15A~3CG15D、3DG56(2G210)、3DG80(2G211、2G910)、3DG18A~3DG18C、2G711A~2G711E、3DG103、3DG112、3DG145~3DG156、3DG122、3DG123、3DG130~3DG132、3DG140~3DG148、3CG102、3CG113、3CG114、3CG122、3CG132、3CG140、3DA89、3DA819~3DA823等型号。

2.进口超高频晶体管  常用的进口超高频晶体管有2SA130、2SA1855、2SA1886、2SC286~2SC288、2SC464~2SC466、2SD1266、BF769、BF959等型号。

(四)中、低频晶体管

低频晶体管的特征频率一般低于或等于3MHZ,中频晶体管的特征频率一般低于30MHZ。

1.中、低频小功率晶体管  中低频小功率晶体管主要用于工作频率较低、功率在1W以下的低频放大和功率放大等电路中。

    常见的国产低频小功率晶体管有3AX1~3AX15、3AX21~3AX25、3AX31、3BX31、3AX81、3AX83、3AX51~3AX55、3DX200~3DX204、3CX200~3CX204等型号,表5-7是各管的主要参数。

常用的进口中、低频小功率晶体管有2SA940、2SC2073、2SC1815、2SB134、2SB135、2N2944~2N2946等型号,各管的主要参数见表5-8。

2.中、低频大功率晶体管  中、低频大功率晶体管一般用在电视机、音响等家电中作为电源调整管、开关管、场输出管、行输出管、功率输出管或用在汽车电子点火电路、逆变器、不间断电源(UPS)等系统中。

常用的国产低频大功率晶体管有3DD102、3DD14、3DD15、3DD52、DD01、DD03、D74、3AD6、3AD30、3DA58、DF104等型号。

常用的进口中、低频大功率晶体管有2SA670、2SB337、2SB556K、2SD553Y、2SD1585、2SC1827、2SC2168、BD201~BD204等型号。

(五)互补对管

为了提高功率放大品的输出功率和效率,减小失真,功率放大器通常采用推挽式功率放大电路,即由两只互补晶体管分别放大一个完整正弦波的正、负半周信号。这要求两只互补晶体管的材料相, ,性能参数(例如耗散功率PCM、集电极电流ICM、反向电压VCBO、电流放大系数hFE、特征频率fT等)也要尽可能一致使用前应进行挑选“配对”。

互补对管一般采用异极性对管,即两只晶体管一只为NPN型管,另一只为PNP型管。

1.大功率互补对管  功率放大器中常用大功率互补对管及其主要参数。

2.中、小功率互补对管  功率放大器等电路中常用的中。

(六)开关晶体管

开关晶体管是一种饱和与截止状态变换速度较快的晶体管,广泛应用于各种脉冲电路、开关电路及功率输出电路中。

开关晶体管分为小功率开关晶体管和高反压大功率开关晶体管等。

1.小功率开关晶体管  小功率开关晶体管一般用于高频放大电路、脉冲电路、开关电路及同步分离电路等。

常用的国产小功率开关晶体管有3AK系列3CK系列和3DK系列,表5-13是各管的主要参数。

2.高反压大功率开关晶体管  高反压大功率开关晶体管通常均为硅NPN型,其反向电压VCBO高于800V,主要用于彩色电视机、电脑显示器中作开关电源管、行输出管或用于汽车电子点火器、电子镇流器、逆变器、不间断电源(UPS)等产品中。

常用的高反压大功率开关晶体管有2SD820、2SD850、2SD1401、2SD1403、2SD1432~2SD1433、2SC1942等型号。

(七)带阻尼行输出管

带阻尼行输出管是将高反压大功率开关晶体管与阻尼二极管、保护电阻封装为一体构成的特殊电子器件,主要用于彩色电视机或电脑显示器中。

带阻尼行输出管有金属封装(TO-3)和塑封(TO-3P)两种封装形式。

(八)差分对管

差分对管也称孪生对管或一体化差分对管,它是将两只性能参数相同的晶体管封装在一起构成的电子器件,一般用在音频放大器或仪器、仪表中作差分输入放大管。

差分对管有NPN型和PNP型两种结构。常见的国产NPN型差分对管有3DG06A~3DG06D等型号。PNP型差分对管有3CSG3、ECM1A等型号。

常见的进口NPN型差分对管有2SC1583等型号,PNP型差分对管有2SA798等型号。

(九)达林顿管

达林顿管也称复合晶体管,具有较大的电流放大系数及较高的输入阻抗。它又分为普通达林顿管和大功率达林顿管。

1.普通达林顿管  普通达林顿管通常由两只晶体管或多只晶体管复合连接而成,内部不带保护电路,耗散功率在2W以下。图5-9是普通达林顿管的基本电路。

普通达林顿管一般采用TO-92塑料封装,主要用于高增益放大电路或继电器驱动电路等。常用的普通达林顿管有PN020、MP-SA6266等型号。

2.大功率达林顿管  大功率达林顿管在普通达林顿管的基础上,增加了由泄放电阻和续流二极管组成的保护电路,稳定性较高,驱动电流更大。

大功率达林顿管一般采用TO-3金属封装或采用TO-126、TO-220、TO-3P等外形塑料封装,主要用于音频功率放大、电源稳压、大电流驱动、开关控制等电路。 

(十)带阻晶体管

      带阻晶体管是将一只或两只电阻器与晶体管连接后封装在一起构成的,作反相器或倒相器,广泛应用于电视机、影碟机、录像机等家电产品中。其封装外形有EM3、UMT、SST(美国或欧洲SOT-23)、SMT(SC-59/日本SOT-23)、MPT(SOT-89)、FTR和TO-92等,耗散功率为150~400mW。

1.带阻晶体管的电路图形符号及文字符号  带阻晶体管目前尚无统一标准符号,在不同厂家的电子产品中电路图形符号及文字符号的标注方法也不一样。例如,日立、松下等公司的产品中常用字母“QR”来表示,东芝公司用字母“RN”来表示,飞利浦及NEC(日电)等公司用字母“Q”表示,还有的厂家用“IC”表示,国内电子产品中可以使用晶体管的文字符号,即用字母“V”或“VT”来表示。

2.常用的带阻晶体管  常用的进口带阻三极管有DTA系列、DTB系列、DTC系列、DTD系列、MRN系列、RN系列、UN系列、KSR系列、FA系列、FN系列、GN系列、GA系列、HC系列、HD系列、HQ系列、HR系列等多种。常用的国产带阻晶体管有GR系列等。表5-18是带阻晶体管(除GR系列为国产的,其余均为进口的)内部电阻器的电阻值。 

(十一)光敏三极管

      光敏三极管是具有放大能力的光-电转换三极管,广泛应用于各种光控电路中。

      在无光照射时,光敏三极管处于截止状态,无电信号输出。光当信号照射其基极(受光窗口)时,光敏三极管将导通,从发射极或集电极输出放大后的电信号。

  1.光敏三极管的外形及符号  光敏三极管在电路中的文字符号与普通三极管相同,用字母“V”或“VT”表示。 

 

      光敏三极管有塑封、金属封装(顶部为玻璃镜窗口)环氧树脂、陶瓷等多种封装结构,引脚也分为两脚和三脚型。

      2.常用的光敏三极管  常用的国产光敏三极管以硅NPN型为主有3DU11~3DU13、3DU21~3DU23、3DU31~3DU33、3DU51A~3DU51C、3DU51~3DU54、3DU111~3DU113、3DU121~3DU123~3DU131~3DU133、3DU311~3DU333、3DU411~3DU433、3DU80等型号,表5-19是各管的主要参数。

(十二)磁敏三极管

      磁敏三极管是一种对磁场敏感的磁-电转换器件,它可以将磁信号转换成电信号。

      常见的磁敏三极管有3CCM和4CCM等型号。3CCM采用双极型结构,具有正、反向磁灵敏度极性,有确定的磁敏感面(通常用色点标注)。

      磁敏三极管一般用于电动机转速控制、防盗等各种磁控电路中。图5-18是磁敏三极管的应用电路。

(十三)恒流三极管

      恒流三极管是一种可以调节和稳定电流的特殊器件。它的三个电极分别是阳极(正极)A阴极(负极)C和控制极G,通过改变恒流三极管控制极的电压,即可调节恒流值的大小。

      恒流三极管一般用于限流保护和恒流标准电源,也可在直流电源等电路中作恒流器件。常用的恒流三极管有3DH010~3DH050等型号,其恒流范围为5~500Ma,工作电压为5~80V。

多道γ能谱分析仪是核辐射的主要测量设备,也是环境γ射线能谱测量的主要设备。它用以确定样品中的核素,以及单个核素的比活度。

以NaI(Tl)闪烁体为探测器的多道γ能谱仪,探测效率高、易于维护、价格不高。目前它仍用于环境样品γ能谱分析。因为它能量分辨不高,目前主要用于天然放射性核素(238U系,232Th系和40K)分析,和能量间隔较远的或能量单一的人工放射性核素(如137Cs、60Co等),或经过放射化学分离的核素样品分析。

以半导体(HPGe)或Ge(Li)为探测器的多道γ能谱仪,能量分辨率高,适于复杂γ能谱分析。由于单个核素的γ射线能量峰分离,相互影响可以忽略,因此测量单个核素的活度、比活度比较简便。

图9-5-2 滤膜气溶胶214Po和218Po α能量谱

(一)能量刻度

能量刻度就是利用已知不同能量的γ射线源测出对应能量的峰位,然后作出能量和峰位(道址)的关系曲线。有了这样的关系曲线,测量未知样品中核素的γ射线能量峰位(道址),就可以找出射线能量,确定核素种类。

根据能量刻度结果,还可以检验谱仪的能量线性范围和线性好坏。

刻度之前根据使用多道能谱仪的道数,以及测量的能量范围,通过调节放大器的放大倍数,选定道能量值(n keV/道)。能量刻度一般选用均匀分布的5~8个标准γ射线能量峰[可以选用241Am(59.6 keV),57Co(121.9 keV),203Hg(279.1 keV),137Cs(661.6 keV),54Mn(534.8 keV),22Na(1274.5 keV)和152Eu]。NaI(Tl)探测器能量分辨率较差,一般使用单能量源。Ge半导体探测器能量分辨率好,可以使用发射多能量的152Euγ射线源,也可以用组合γ射线源。

测量其全能峰位置(道址),作能量刻度曲线(图9-5-3)。可用线性方程表示:

核辐射场与放射性勘查

式中:xp为峰道址;Eγ为γ射线能量(keV),b为道址坐标的截距,a为斜率表示的增益,(n keV/道)。

在精确进行能量刻度时,应当考虑实际上的非线性问题。可以用分段线性法,即假设峰位和能量之间关系是逐段线性的。通常用一个二次多项式表示峰位(xp)和能量(Eγ)关系,进行拟合。

图9-5-3 能量刻度曲线

核辐射场与放射性勘查

式中:α0表示零道所对应的能量;α1表示增益;α2表示系统的非线性。

利用至少3组已知的数据点(Eγ,xp)联立解,求出系数α0、α1、α2。当数据点较多时,可用最小二乘法求出。

一般在能量刻度的同时,根据137Cs的661.6 keV能量峰进行能量分辨率(R)测定和计算(见图4-1-2和公式4-1-1)。

γ能谱仪,能量刻度的频度,取决于谱仪的工作稳定性。在连续工作情况下,一般不需要经常做能量刻度。仪器大修之后或放置时间过长,应当做能量刻度检查。

(二)效率刻度

效率刻度的目的就是确定探测效率与γ射线能量之间的关系。探测效率又分为全谱探测效率和全能(量)峰探测效率。全谱探测效率是对谱仪测量的全部γ射线范围的探测效率,这在γ射线能谱测量中应用很少。一般主要研究单个能量峰的探测效率,叫全能峰探测效率。

被测量的放射源(样品),单位时间发射的某种能量的γ射线数叫发射率(N)。探测器单位时间记录的该能量的γ射线数目,叫全能峰计数率(n)。两者之比为该能量γ射线的探测效率:

核辐射场与放射性勘查

式中:A为放射源的活度;P为该能量γ射线的分之比,即放射源发射的多种能量γ射线中该能量γ射线所占的比例。

全能峰效率εs不仅与γ射线能量有关,还与源的几何形状、物质成分以及探测器与源的相对位置有关。γ射线级联、在探测器中产生电子对效应等也对εs有影响。

根据刻度样品源的形状,可分为点源刻度、面源刻度和体源刻度。环境样品和地质找矿样品一样,大多属于体源样品,通常正放在探测器表面的支架上。因此,主要讨论近探测器测量的体源刻度。

刻度源最好采用可溯源传递的国内外标准源或标准参考源,也可购买标准源溶液或标准参考物质自己配制,再由剂量部门标定确认。制备标准源的基质主要用矿石粉、土壤和河泥等,所用的核素主要有天然放射性核素铀系、钍系、40K,人工核素主要有60Co、137Cs和152Eu等。

效率刻度方法有实验方法、理论计算方法,或两者相结合的方法。理论计算的有数值积分法和蒙托卡罗方法,常用的是直接比较法和效率曲线法。

效率刻度应当考虑到标准源系列必须与待测样品的基本成分、几何形状以及探测装置的相对位置必须一致。对锗半导体探测器谱仪来说,全能峰面积的计算方法也应是同一种方法,低能区还应考虑γ射线照射NaI(Tl)引起碘的Kx射线逃逸效应(见第十章第二节)的能量损失修正。实际上NaI(Tl)谱仪用作天然核素和核设施的常规测量,并不需要考虑太低能量。

1.直接比较法

选取标准样品源与待测样品的形状、成分、密度和测量几何条件近于完全相同,则:

核辐射场与放射性勘查

但由于NaI(Tl)能量分辨率不高,全能峰互有干扰,常使用剥谱方法(第五章第七节),逆矩阵(见第五章第三节)解谱方法得到A0和A。因此NaI(Tl)γ谱仪,目前主要用于某些常规分析,如建筑材料样品中镭、钍、钾分析;核电站常规监测131I等;在地质找矿中分析铀、镭、钍或铀、钍、钾等。用标准样品源对装置系数确定之后,即可提供常规样品分析。

2.效率曲线法

选用一组活度已知的单能源,能量分布应满足使用范围。各源具有相同的几何形状和环境衡定的测量条件,测量系列γ射线谱,计算相应的全能峰面积(S),按下式计算全能峰效率:

核辐射场与放射性勘查

式中:A为标准源的活度;P为核素该能量γ射线分之比;t为γ射线谱测量时间。

通常全能峰效率εs与γ射线能量Eγ的关系可写为

核辐射场与放射性勘查

式中:E0取为0.511 MeV;b、c为常系数,在数值上c<<b,因此ln(E0/Eγ)≤1。当Eγ>0.2MeV以后,则(9-5-16)式中二次项可以忽略,可近似得到:

核辐射场与放射性勘查

由此可见,在对数坐标上εs与Eγ的关系为一条直线,即为全能峰效率刻度曲线。

(9-5-17)式中只有两个系数α1和α2。因此,只要选用两种γ射线能量大于0.2 MeV的标准核素源,即可解出该式。假定这两γ射线能量为E1和E2,经测量后根据其全能峰面积,得到的探测效率分别为ε1和ε2,可得下式:

核辐射场与放射性勘查

或换算成10为底对数式:

核辐射场与放射性勘查

由(9-5-19)式可见,在标定的γ射线能量范围内,可以求出任何能量Eγ的全能峰效率。

(三)效率刻度的影响与校正

刻度是γ能谱仪定量分析的基础,全能峰刻度质量的好坏决定了分析结果的可靠程度。

γ射线进入探测器通过光电效应、康普顿散射和电子对效应作用,产生出光电峰(称全能峰)。事实上,光电峰的形成还伴随有其他许多作用过程,使全能峰形受到影响而复杂化。主要有下列几种。

1.符合加和效应及其校正方法

符合加和效应,又称真符合加和效应或和峰效应。

在测60 Co的γ能量谱时,发现60 Co一次核衰变放出两个级联 γ射线,1.17 MeV和1.33 MeV。因为两者是同时发生的,有可能同时被晶体吸收,形成两者的真符合事件,这时探测器不是输出两个脉冲,而是输出一个为两个光子能量之和的脉冲。这种脉冲的产生过程称符合加和效应(或和峰效应)。如图9-5-4 所示。在γ谱图上出现两能量相加的2.5 MeV谱峰,使全能峰受到损失。若级联辐射中有一个光子伴随产生内转换现象,产生一个X射线,这时可能出现两个γ射线和峰,和一个γ射线和一个X射线的和峰,如181 Hf、132 Te、117 Snm就是这样的例子。这种和峰效应的几率,随源到探测器的距离减少而增大。在低水平放射性测量时,常将样品置于探测器的顶盖极近处。若为级联辐射的放射性核素,如60 Co、88 Y、152 Eu等,则引起和峰效应比较强。有可能达到20%~30%。所以刻度时尽量选用单能γ射线源,如54 Mn,57 Co,65 Zn,137 Cs等,可以不必做加和修正,效率刻度的准确度可达1%~2%(表9-5-1)。

图9-5-4 60Co级联γ射线的符合加和效应谱

表9-5-1 13-2800 keV效率刻度准确度举例

如果待测样品中含有级联辐射的核素,那么必须使用与之对应的级联核素刻度源,才能得到准确的结果。

有级联γ发射的核素,相对于原子的自旋轴γ1和γ2的发射方向有一定角度分布关系,叫角关联或方向关联[常用角关联函数W(O)表示]。

符合加和效应,是放射性核素在γ能谱仪的分辨时间内发射两个或更多个级联γ光子所引起的。如果标准样品源与待测样品相同,进行相对测量不需要进行修正。如果使用有级联跃迁的系列标准源或多能量γ射线源测定效率刻度曲线,则必须进行修正。

修正有实验方法,有理论计算方法。本节主要讨论实验方法。即符合加和因子的实验测定。

对于常用来刻度锗半导体γ谱仪的放射性核素源60Co,88Y和152Eu,通过实验测定其符合加和修正因子。考虑常用的测量形式,分两种样品形态和几何条件,分别进行测定。

1)放射源为点源,测量时源直接放置于探测器的顶盖上。

2)用直径为90 mm的玻璃烧杯,内装1L放射性溶液。测量时烧杯直接放在探测器的顶盖上。

为了避免脉冲叠加,选择源的活度适中,使总计数率低于2000计数/s。

首先选择其活度Aγ已知的单能γ射线核素源,这些核素源都是没有级联或产出符合加和效应(包括随机加和效应)。例如选用57Co(122 keV)、203Hg(279 keV)、113Sn(391 keV)、85St(514 keV)、137Cs(662 keV)、54Mn(835 keV)和65Zn(1115 keV)等。将其分别制成点源和1L溶液源装入烧杯待测。

将制好的两种核素源,分别置于锗探测器顶盖和距探测器盖16 cm处支架上,对选定的标准源的能量峰进行测量,计算每种源两个几何条件下的能量峰面积。对点源测得探测器顶盖上的计数率为Ng和16 cm处计数率为Ns。则放盖上和放16 cm处的峰面积的效率分别为

核辐射场与放射性勘查

则小源距(放顶盖上的)和大源距(放16 cm处的)的效率比:

核辐射场与放射性勘查

点源效率比(R)随标样源γ射线能量的变化关系如图9-5-5所示。

液体源的测量结果,进行同样计算,两个测量位置的效率比(R)随γ射线能量变化关系如图9-5-6所示。

两图中实线为通过刻度源测点的实测效率刻度线。点源(图9-5-5)的效率比随能量降低而增加,说明探测效率随探测器与源之间距离增大而降低,低能部分空气吸收明显降低更快。对于烧杯装的液体源,由于γ射线在液体中的自吸收,随γ射线能量降低而明显增大,形成能量降低效率比R降低。

图9-5-5 点源效率比R与γ射线能量关系

再用同样方法,使用有级联跃迁的已知活度的放射性核素60Co、88Y和152Eu,与前述单能γ射线源一样要求,分别制成活度适当的点源和液体源(1L),按以上述完全相同的几何条件进行测量。分别将放射源放在探测器顶盖上和16 cm支架上进行等精度测量。用同样的全能峰面积计数方法,求得60Co、88Y和152Eu的全能峰面积计数,N′g和N′s。对点源和液体源的三种核素,分别计算两种源距的效率比R′=ε′g/ε′s。按点源和液体源,分别将R与γ射线能量关系绘于图9-5-5和图9-5-6中。

图9-5-6 液体源R与γ射线能量关系

由两图可见,由于存在符合加和效应,全能峰有计数损失,所以效率比都落在实线(单能源测的)下面,即效率比(除个别点外)值偏低。说明用级联辐射源进行效率刻度,得到的效率值偏低,必须将所得效率ε′(或N′)乘上一个校正因子C,进行校正。

由单能源和级联源测得的上述结果可以求出:

核辐射场与放射性勘查

探测器与放射源距离越大,级联源对效率的影响越小。即单能源与有级联的源测得的效率曲线几乎相等,或者说相差很小。即16 cm处测得的ε′s和εs比较接近。可认为

核辐射场与放射性勘查

式中:C1为大源距条件下的校正因子。则(9-5-21)式可改写为

核辐射场与放射性勘查

则用单能γ射线源测得的无符合加和效应的源放在探测器顶盖上(小源距)的效率:

核辐射场与放射性勘查

式中:C=C1·R/R′。如果实验时取源距足够大(≥16 cm),C1≈1。

核辐射场与放射性勘查

根据上述实验条件,测得的校正因子,列于表9-5-2。从数值可以看出级联的影响程度。

2.样品内γ射线自吸收校正

环境样品与地质找矿样品一样,大多为体源样品,存在γ射线自吸收,特别是低能量γ射线自吸收是严重的。当标准样品源与待测样品的物质组成和密度不同时更为突出,必须进行校正。

自吸收校正有实验方法和理论计算方法,下面讨论一种常用半经验公式方法。方法适用条件是:样品厚度(H)不大于5 cm,直径不大于探测器直径的两倍(圆柱形样品)。

假定刻度源与待测样品形状相同。则探测器测得样品的全能峰效率ε(E,h),可近似写为

核辐射场与放射性勘查

式中:εs(H)为标准样品源能量为E时的全能峰效率;F(E)为相应的参数。

实验证明,对于体标准样品源,全能峰效率εs(H)的倒数与样品厚度是近似线性关系(图9-5-7)。

表9-5-2 点源和液体体源符合加和校正因子(举例)

核辐射场与放射性勘查

式中:H为样品厚度(cm);a为常系数;b为斜率。

由图9-5-7可见:a=1/ε0,b=1/(D·ε0)。代入(9-5-26)式得:

核辐射场与放射性勘查

当标准样品源与样品源自吸收不同时,则样品的效率校正值δε(E,H)为

图9-5-7 1/εs与样品厚度关系

核辐射场与放射性勘查

式中:εs(E,H)为标准样品源的效率,ε样(E,H)为所测样品的效率,μs、μ样分别为标准样品源和样品中能量为E的γ射线吸收系数,x为样品厚度的变量。

为了测量μs和μ样,采用152Eu面源,放置于探测器上不同的两个高度。如放在探测器顶盖上,和垫上10 cm左右的样品杯上,分别测量其全能峰净面积计数率N0和N,则

核辐射场与放射性勘查

再根据二项式拟合,计算吸收系数μ值:

核辐射场与放射性勘查

式中:Cn为拟合参数,n一般为2。参考(9-5-16)式计算方法,求出μ和能量E的关系曲线,求出需要的μ值,代入(9-5-27)式求出校正值。

3.逃逸效应

当γ射线在探测器晶体中发生光电效应时,在原子的电子壳层形成空位,当外层电子充填时产生X射线(或俄歇电子)。在NaI(Tl)中,碘原子的Kx射线能量为28 keV,若发生在晶体表层附近X射线可以射出,使入射γ射线能量降低28 keV。入射的低能γ射线,发生的几率较大;随γ射线能量增大而减小。

对锗半导体探测器来说,对入射的低能γ射线同样造成影响。

图9-5-8 用Ge(Li)测量的24Na γ谱

对于入射锗探测器的高能γ射线,当能量大于1.02 MeV时,将产生电子对效应;使入射γ射线能量降低1.02 MeV,形成新的能量峰,称双逃逸峰。如24Na(发射2754 keV,和1368 keV射线)的2754 keV的双逃逸峰能量为2754-1020=1734 keV,其γ射线能量谱,如图9-5-8所示。值得注意的是双逃逸峰与全能峰之间的能量差并非严格为2m0c2。因为电子对生成后,正电子与束缚电子结合而消失,消耗一部分能量用于克服电子的束缚,使双逃逸峰向高能方向迁移。

双逃逸峰是可以用作核素分析的代表能量峰。因此效率刻度应当包括在内。

对双逃逸峰的影响有两点:①边缘效应。高能量的电子和正电子在全部能量消耗之前即从探测器体积中逸出,因为主要发生在探测器边缘,所以叫边缘效应。②辐射损失效应。高能量的电子可能通过发生轫致辐射而损失能量,而且轫致辐射没有被吸收,即造成能量损失。

(四)全能峰面积计算与应用举例

对于NaI(Tl)探测器谱仪来讲,在许多情况下难以利用完全分开的全能峰面积来计算核素的比活度。锗半导体探测器γ谱仪,则主要利用计算全能峰面积来确定样品中核素的比活度。

1.全能峰面积计算方法

确定全能峰面积有很多方法。评价其优劣,不论它能否真正反映全能峰的真面积,重要的是抗干扰能力以及高本底、弱峰情况下峰面积计算结果的准确代表性。

下面介绍的几种方法,原则上均适用于锗半导体和NaI(Tl)探测器γ能谱仪测得的全能峰面积计算。

(1)全峰面积法

全峰面积法又叫TPA法。随本底变动,在全能峰两侧的峰谷位置,或本底直线与峰底相切的位置,如图9-5-9所示,yl和yh两点以直线相连称为基线。l和h为峰的边界道。下面为自然本底和康普顿散射本底。l和h道之间的总计数减去本底,即为全能峰面积(斜线部分)。

核辐射场与放射性勘查

式中:yi为谱峰内第i道的计数率;l为谱峰的左边道数;h为谱峰的右边道数。

TPA法的优点是计算简便。但取峰位道址较宽,而且按直线扣除本底,容易受本底变化影响。因为其他高能射线的康普顿散射,可能不规则地进入本底,并非构成直线。

根据均方差理论,峰面积(9-5-29)的统计误差为

核辐射场与放射性勘查

可见,峰面积的均方差决定于A、B两部分面积。B的系数因子为(h-l-1),而A的系数因子是1。可见,本底面积(B)对均方差影响最大。

(2)Colvell峰面积计算方法

以谱峰的极大值为中心道,以i=0表示。向左右两边各几道为边界道,分别为i=-n和i=n道,向上延线,与谱峰两边线相交点联线。上面为峰面积(A),下面为本底(B)。如图9-5-10所示。谱峰面积为

图9-5-9 TPA法计算峰面积

核辐射场与放射性勘查

根据(9-5-30)式可计算谱峰面积A的均方差为

核辐射场与放射性勘查

图9-5-10 Covell法计算峰面积

图9-5-11 Wasson峰面积计算方法

因为计算谱峰面积的道数减少,只利用谱近中心的数据计算A,这些数据测量精度较高,与TPA法相比,本底受不确定影响较小。但-n和n选在峰的斜线上易受峰漂和分辨率变化影响。

(3)Wasson峰面积计算方法

该法综合了TPA法和Cdvell法的基础上提出的。本底基线取法与TPA法一样以全能峰两侧的峰底点,作一直线为本底基线。把峰面积的边界道,取在谱峰中心道(i=0)的i=-n和i=n的谱峰的前沿和后沿上。如图9-5-11所示。峰面积为

核辐射场与放射性勘查

式中:b-n、bn为谱峰的左右边界道对应基底线的计数。

可以证明(9-5-32)式也可以写成

核辐射场与放射性勘查

式中:b0=(b-n+bn)/2,w=2n+1。

根据误差传递理论,谱峰面积的均方差为:

核辐射场与放射性勘查

该方法计算峰面积取道数少;基线较低,因此提高了峰面积与本底面积(B)的比值,本底变化影响较小。

2.应用举例

NaI(Tl)探测器能量分辨率不高。比较复杂的γ能量谱峰常常是叠加在一起。因此,解谱是NaI(Tl)γ谱仪测量结果数据处理的重要任务。

定量解谱主要是四种方法:①剥谱方法;②逆矩阵法解谱;③逐道最小二乘法及复合道区最小二乘法;④函数拟合峰面积法。逆矩阵法解谱是当前常用方法。

NaI(Tl)探测器γ谱仪常遇到的环境样品测量的是建筑材料和土壤样品,与地质找矿样品相比,物质成分相似,但核素含量更低。虽然分析方法相同,但难度更大。

下面以建筑材料样品为例,说明用NaI(Tl)多道γ能谱仪测量分析其中镭、钍、钾的比活度。

实验室多道γ能谱分析是将探测器放在10 cm厚的铅室中屏蔽环境中γ射线及宇宙射线的绝大部分,降低了本底计数。样品层一般不厚(10 cm左右),测得的γ射线谱与地面和航空测量的γ谱不同,低能峰比较清晰。因此,实验室分析除40K只能选择1.46 MeV以外,主要选用低能峰。

铀选用:93 keV(UX1)。

镭选用:352 keV(214Pb)。

钍选用:239 keV(212Pb)。

测量时,首先以每个核素选定的特征能量峰为中点两边对称扩展选一个适当的测量道宽,宽度一般选40~60 keV。测量每个核素能量峰道宽的计数率(Mi),建立一个联立方程组(逆短阵)。

核辐射场与放射性勘查

可以参照(5-3-2)式和(5-3-4)式求解(9-5-34)式,并通过对相应标准样品的测量数据计算出响应系数aij,即可分别计算样品中镭、钍、钾,建立建筑材料的常规测量方法。同样方法,可以建立核电站常规测量131I等人工核素方法,以及地质找矿样品中铀、钍、钾含量的常规测量方法。


欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/dianzi/9187640.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-04-25
下一篇 2023-04-25

发表评论

登录后才能评论

评论列表(0条)

保存