半导体制冷片原理

半导体制冷片原理,第1张

半导体制冷片原理:

由直流电源提供电子流所需的能量,通上电源后,电子负极(-)出发,首先经过P型半导体,于此吸热量,到了N型半导体,又将热量放出,每经过一个NP模块,就有热量由一边被送到另外一边造成温差而形成冷热端。

冷热端分别由两片陶瓷片所构成,冷端要接热源,也就是欲冷却之。在以往致冷器是运用在CPU的,是利用冷端面来冷却CPU,而热端面散出的热量则必需靠风扇来排出。制冷器也应用于做成车用冷/热保温箱,冷的方面可以冷饮机,热的方面可以保温热的东西。

半导体制冷片作为特种冷源,在技术应用上具有以下的优点和特点:

1、不需要任何制冷剂,可连续工作,没有污染源没有旋转部件,不会产生回转效应,没有滑动部件是一种固体片件,工作时没有震动、噪音、寿命长,安装容易。

2、半导体制冷片具有两种功能,既能制冷,又能加热,制冷效率一般不高,但制热效率很高,永远大于1。因此使用一个片件就可以代替分立的加热系统和制冷系统。

3、半导体制冷片是电流换能型片件,通过输入电流的控制,可实现高精度的温度控制,再加上温度检测和控制手段,很容易实现遥控、程控、计算机控制,便于组成自动控制系统。

4、半导体制冷片热惯性非常小,制冷制热时间很快,在热端散热良好冷端空载的情况下,通电不到一分钟,制冷片就能达到最大温差。

5、半导体制冷片的反向使用就是温差发电,半导体制冷片一般适用于中低温区发电。

6、半导体制冷片的单个制冷元件对的功率很小,但组合成电堆,用同类型的电堆串、并联的方法组合成制冷系统的话,功率就可以做的很大,因此制冷功率可以做到几毫瓦到上万瓦的范围。

7、半导体制冷片的温差范围,从正温90℃到负温度130℃都可以实现。

在原理上,半导体的制冷片只能算是一个热传递的工具,虽然制冷片会主动为芯片散热,但依然要将热端的高于芯片的发热量散发掉。在制冷片工作期间,只要冷热端出现温差,热量便不断地通过晶格的传递,将热量移动到热端并通过散热设备散发出去。因此,制冷片对于芯片来说是主动制冷的装置,而对于整个系统来说,只能算是主动的导热装置,因此,采用半导体制冷装置的ZENO96智冷版,依然要采取主动散热的方式对制冷片的热端进行降温。 风扇以及散热片的作用主要是为制冷片的热端散热,通常热端的温度在没有散热装置的时候会达到100度左右,极易超过制冷片的承受极限,而且半导体制冷效率的关键就是要尽快降低热端温度以增大两端温差,提高制冷效果,因此在热端采用大型的散热片以及主动的散热风扇将有助于散热系统的优良工作。在正常使用情况下,冷热端的温差将保持在40~65度之间。 当一块N型半导体材料和一块P型半导体材料联结成电偶对时,在这个电路中接通直流电流后,就能产生能量的转移,电流由N型元件流向P型元件的接头吸收热量,成为冷端由P型元件流向N型元件的接头释放热量,成为热端。吸热和放热的大小是通过电流的大小以及半导体材料N、P的元件对数来决定,以下三点是热电制冷的温差电效应。

1、塞贝克效应

(SEEBECKEFFECT) 一八二二年德国人塞贝克发现当两种不同的导体相连接时,如两个连接点保持不同的温差,则在导体中产生一个温差电动势:ES=S.△T 式中:ES为温差电动势 S为温差电动势率(塞贝克系数) △T为接点之间的温差

2、珀尔帖效应

(PELTIEREFFECT) 一八三四年法国人珀尔帖发现了与塞贝克效应的效应,即当电流流经两个不同导体形成的接点时,接点处会产生放热和吸热现象,放热或吸热大小由电流的大小来决定。 Qл=л.Iл=aTc 式中:Qπ为放热或吸热功率 π为比例系数,称为珀尔帖系数 I为工作电流 a为温差电动势率 Tc为冷接点温度

3、汤姆逊效应

(THOMSONEFFECT) 当电流流经存在温度梯度的导体时,除了由导体电阻产生的焦耳热之外,导体还要放出或吸收热量,在温差为△T的导体两点之间,其放热量或吸热量为: Qτ=τ.I.△T Qτ为放热或吸热功率 τ为汤姆逊系数 I为工作电流 △T为温度梯度 以上的理论直到本世纪五十年代,苏联科学院半导体研究所约飞院士对半导体进行了大量研究,于一九五四年发表了研究成果,表明碲化铋化合物固溶体有良好的制冷效果,这是最早的也是最重要的热电半导体材料,至今还是温差制冷中半导体材料的一种主要成份。 约飞的理论得到实践应用后,有众多的学者进行研究到六十年代半导体制冷材料的优值系数,才达到相当水平,得到大规模的应用,也就是我们现在的半导体制冷片件。 中国在半导体制冷技术开始于50年代末60年代初,当时在国际上也是比较早的研究单位之一,60年代中期,半导体材料的性能达到了国际水平,60年代末至80年代初是我国半导体制冷片技术发展的一个台阶。在此期间,一方面半导体制冷材料的优值系数提高,另一方面拓宽其应用领域。中国科学院半导体研究所投入了大量的人力和物力,获得了半导体制冷片,因而才有了现在的半导体制冷片的生产及其两次产品的开发和应用。

以上内容来自http://zhidao.baidu.com/question/169411393.html

半导体制冷器件的工作原理是基于帕尔帖原理,该效应是在1834年由J.A.C帕尔帖首先发现的,即利用当两种不同的导体A和B组成的电路且通有直流电时,在接头处除焦耳热以外还会释放出某种其它的热量,而另一个接头处则吸收热量,且帕尔帖效应所引起的这种现象是可逆的,改变电流方向时,放热和吸热的接头也随之改变,吸收和放出的热量与电流强度I[A]成正比,且与两种导体的性质及热端的温度有关,即:

Qab=Iπabπab称做导体A和B之间的相对帕尔帖系数

,单位为[V],

πab为正值时,表示吸热,反之为放热,由于吸放热是可逆的,所以πab=-πab帕尔帖系数的大小取决于构成闭合回路的材料的性质和接点温度,其数值可以由赛贝克系数αab[V.K-1]和接头处的绝对温度T[K]得出πab=αabT与塞贝克效应相,帕尔帖系也具有加和性,即:Qac=Qab+Qbc=(πab+πbc)I因此绝对帕尔帖系数有πab=πa-

πb金属材料的帕尔帖效应比较微弱,而半导体材料则要强得多,因而得到实际应用的温差电制冷器件都是由半导体材料制成的。制冷材料AVIoffe和AFIoffe指出,在同族元素或同种类型的化合物质间,晶格热导率Kp随着平均原子量A的增长呈下降趋势。RWKeyes通过实验推断出,KpT近似于Tm3/2ρ2/3A-7/6成比例,即近似与原子量A成正比,因此通常应选取由重元素组成的化合物作为半导体制冷材料。半导体制冷材料的另一个巨大发展是1956年由AFIoffe等提出的固溶体理论,即利用同晶化合物形成类质同晶的固溶体。固溶体中掺入同晶化合物引入的等价置换原子产生的短程畸变,使得声子散射增加,从而降低了晶格导热率,而对载流子迁移率的影响却很小,因此使得优值系数增大。例如50%Bi2Te3-50%Bi2Se3固溶体与Bi2Te3相比较,其热导率降低33%,而迁移率仅稍有增加,因而优值系数将提高50%到一倍。Ag(1-x)Cu(x)Ti

Te、Bi-Sb合金和YBaCuO超导材料等曾经成为半导体制冷学者的研究对象,并通过实验证明可以成为较好的低温制冷材料。下面将分别介绍这几种热电性能较好的半导体制冷材料。二元固溶体,无论是P型还是N型,晶格热导率均比Bi2Te3有较大降低,但N型材料的优值系数却提高很小,这可能是因为在Bi2Te3中引入Bi2Se3时,随着Bi2Se3摩尔含量的不同呈现出两种不同的导电特性,势必会使两种特性都不会很强,通过合适的掺杂虽可以增强材料的导电特性,提高材料的优值系数,但归根结底还是应该在本题物质上有所突破。


欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/dianzi/9189481.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-04-25
下一篇 2023-04-25

发表评论

登录后才能评论

评论列表(0条)

保存