石墨烯发热原理是基于单层石墨烯的特性,首先石墨烯是目前为止导热系数最高的材料,具有非常好的热传导性能。其次石墨烯在室温下载流子(导电离子)为15000cm/(v.s),这一数值超出硅材料的十倍,是目前已知载流子迁移率最高的物质锑化铟(InSb)的两倍以上。
石墨烯存在于自然界,只是难以剥离出单层结构。石墨烯一层层叠起来就是石墨,厚1毫米的石墨大约包含300万层石墨烯。铅笔在纸上轻轻划过,留下的痕迹就可能是几层甚至仅仅一层石墨烯。
扩展资料:
石墨烯中电子载体和空穴载流子的半整数量子霍尔效应可以通过电场作用改变化学势而被观察到,而科学家在室温条件下就观察到了石墨烯的这种量子霍尔效应。
石墨烯中的载流子遵循一种特殊的量子隧道效应,在碰到杂质时不会产生背散射,这是石墨烯局域超强导电性以及很高的载流子迁移率的原因。石墨烯中的电子和光子均没有静止质量,他们的速度是和动能没有关系的常数。
石墨烯是一种零距离半导体,因为它的传导和价带在狄拉克点相遇。在狄拉克点的六个位置动量空间的边缘布里渊区分为两组等效的三份。相比之下,传统半导体的主要点通常为Γ,动量为零。
石墨烯的化学性质与石墨类似,石墨烯可以吸附并脱附各种原子和分子。当这些原子或分子作为给体或受体时可以改变石墨烯载流子的浓度,而石墨烯本身却可以保持很好的导电性。但当吸附其他物质时,如H+和OH-时,会产生一些衍生物,使石墨烯的导电性变差,但并没有产生新的化合物。
参考资料来源:百度百科——石墨烯
数字信息化时代的到来加速了硅基芯片更新换代的速率,为了满足设备对大数据运算的需求,芯片厂商采用传统的“增加硅晶体管数量”的方式来提高芯片性能,延续摩尔定律。但硅基芯片的内置可用规格逐渐逼近天花板,寻找一种能够替代硅元素地位的新型元素,成为未来半导体进步的必要前提。
我是柏柏说 科技 ,资深半导体 科技 爱好者。本期为大家带来的资讯是:IMEC举办的IEEE会议。延续摩尔定律,2纳米以下芯片的关键原料,决定未来半导体发展方向的国产石墨烯技术。
老规矩,开门见山。针对硅基芯片内置规格有限,IMEC在2021年召开的“IEEE国际芯片导线技术会议”提出了几种可用来延续未来摩尔定律的异质整合方法。值得一提的是:IEEE会议提出的异质整合方法大多都是建立在石墨烯材料基础上的。
口说无凭,IMEC在IEEE会中提出的异质整合方法有哪些呢?芯片制造后端制程采用通孔混合异端金属布线、半镶嵌制程、零通孔结构解决因硅基晶体管数量增多产生的布线拥塞,讯号迟缓问题。由于石墨烯材料具备优良的导电性、导热性以及电子活泼性等良好特性;成为IEEE的首选研究对象。
其它质量因素采用钴、钌、钨、铝镍合金、钌钒合金等有序二元介金属化合物代替传统的硅晶圆,用来解决导线层布线冗杂等布局问题。补充一点,这里说的质量因素指代块材电阻与金属内部载子平均自由路径。需要注意的是,上述提到的这些都是建立在“将石墨烯材料作为金属材料的氧化阻障层、超薄扩散阻障层”的理论模型上的。
也就是说,IMEC在IEEE会中提出的异质整合方法,其包含的能够解决2纳米以下制程芯片导线冗杂方法,诸如在铜等金属中混杂石墨烯或是在掺杂金属元素的方案,其作用对象都是石墨烯材料。之所以朝石墨烯中加入金属元素,是为了提高石墨烯的载流子浓度。需要注意的是,石墨烯材料是导电的,但是石墨烯的导电率是由电子迁移率决定的。
研究中,IEEE将包含化学气相沉积的多层石墨烯薄膜,成功转移到5纳米的钌金属薄膜上,将钌与石墨烯制程组件结构,发现石墨烯可以完全的依附在钌金属薄膜上。这也证明了石墨烯材料可以通过掺杂金属物的方式,来将其用于高精尖芯片的制造中。包括后续对钌、石墨烯制成物进行封装等试验过程,全都在一定程度上证实了石墨烯将可能成为未来延续摩尔定律的最佳材料。
与我们在锗基、硅基等第一代半导体材料中被国外核心技术“卡脖子”的处境不同;我国在第二代、第三代半导体材料中的技术位居世界一流。而属于第三代半导体材料的石墨烯,是我国未来发展半导体行业的“一张王牌”。中科院早在2020年10月16日,便已经实现了8英寸石墨烯晶圆的量产。
毫不夸张地说,石墨烯有望成为用于延续未来摩尔定律的新型材料,我国的石墨烯技术将成为未来全球半导体原材料的重要组成部分。这次IEEE通过将钌、钴等元素混杂到石墨烯晶圆中的试验,也为后续半导体产业链朝石墨烯方向变更提供了一定的基础理论。
拿目前我国实现产业链自主化的28纳米制程举例;石墨烯材料优于硅基材料的内置架空性与导电性、散热性,决定了石墨烯芯片优于硅基芯片。同为28纳米制程的石墨烯芯片,其性能是硅基芯片的5~10倍。也就是说,28纳米制程的石墨烯芯片,其性能表现媲美采用5纳米到3纳米制程的硅基芯片。
简单来说,如果日后石墨烯晶圆能够实现大批量生产,与之相匹配的产业链逐步完善。我们完全可以避开国外的EUV光刻机,来生产出质量更优、性能更高、成本更低的芯片。毕竟我国是第一个实现8英寸晶圆量产的国家。
当然,以目前的现状来看,硅基半导体芯片依旧是主流。28纳米制程的半导体芯片占半导体芯片市场的60%。但不同于硅晶体提炼方法,高质量的石墨烯材料其适宜的成长温度在900 到1000 之间。此外,通过加入金属元素来提高电阻的做法虽说可以有效控制石墨烯材料的电子活性,但对比硅基材料,石墨烯材料的时间、经济成本都比较高。
虽说不如云南大学的硫化铂成本高,但对于一家企业来说,设备链更替所需要的成本已经够高了。更何况用于芯片制造的原料,其量产规模很大。额外的成本往往也是很多企业难以承受的。例如中芯国际曾在客户互动平台上表示(上图),考虑到时间、资金成本,公司暂无石墨烯晶圆业务。
我们应该在继续发展硅基半导体的基础上,着手未来石墨烯晶圆设备链的攻坚,着眼未来的同时也要把握当下。祝愿国产半导体厂商愈发强大,在半导体领域中早日掌握核心技术。
对于“国产半导体行业日趋成熟的石墨烯技术”,大伙有什么想说的呢?你认为石墨烯技术能否助力我国在半导体领域中实现高精尖制程芯片自给自足的目标呢?欢迎在下方留言、评论。
我是柏柏说 科技 ,资深半导体 科技 爱好者。关注我,带你了解更多最新的半导体资讯,学习更多有用的半导体知识。
石墨烯内部碳原子的排列方式与石墨单原子层一样以sp杂化轨道成键,并有如下的特点:碳原子有4个价电子,其中3个电子生成sp键,即每个碳原子都贡献一个位于pz轨道上的未成键电子,近邻原子的pz轨道与平面成垂直方向可形成π键,新形成的π键呈半填满状态。研究证实,石墨烯中碳原子的配位数为3,每两个相邻碳原子间的键长为1.42 10米,键与键之间的夹角为120 。除了σ键与其他碳原子链接成六角环的蜂窝式层状结构外,每个碳原子的垂直于层平面的pz轨道可以形成贯穿全层的多原子的大π键(与苯环类似),因而具有优良的导电和光学性能。
石墨烯是已知强度最高的材料之一,同时还具有很好的韧性,且可以弯曲,石墨烯的理论杨氏模量达1.0TPa,固有的拉伸强度为130GPa。而利用氢等离子改性的还原石墨烯也具有非常好的强度,平均模量可大0.25TPa。 由石墨烯薄片组成的石墨纸拥有很多的孔,因而石墨纸显得很脆,然而,经氧化得到功能化石墨烯,再由功能化石墨烯做成石墨纸则会异常坚固强韧。
石墨烯在室温下的载流子迁移率约为15000cm/(V·s),这一数值超过了硅材料的10倍,是已知载流子迁移率最高的物质锑化铟(InSb)的两倍以上。在某些特定条件下如低温下,石墨烯的载流子迁移率甚至可高达250000cm/(V·s)。与很多材料不一样,石墨烯的电子迁移率受温度变化的影响较小,50~500K之间的任何温度下,单层石墨烯的电子迁移率都在15000cm/(V·s)左右。另外,石墨烯中电子载体和空穴载流子的半整数量子霍尔效应可以通过电场作用改变化学势而被观察到,而科学家在室温条件下就观察到了石墨烯的这种量子霍尔效应。 石墨烯中的载流子遵循一种特殊的量子隧道效应,在碰到杂质时不会产生背散射,这是石墨烯局域超强导电性以及很高的载流子迁移率的原因。石墨烯中的电子和光子均没有静止质量,他们的速度是和动能没有关系的常数。 石墨烯是一种零距离半导体,因为它的传导和价带在狄拉克点相遇。在狄拉克点的六个位置动量空间的边缘布里渊区分为两组等效的三份。相比之下,传统半导体的主要点通常为Γ,动量为零。
石墨烯具有非常好的热传导性能。纯的无缺陷的单层石墨烯的导热系数高达5300W/mK,是为止导热系数最高的碳材料,高于单壁碳纳米管(3500W/mK)和多壁碳纳米管(3000W/mK)。当它作为载体时,导热系数也可达600W/mK。 此外,石墨烯的d道热导率可以使单位圆周和长度的碳纳米管的d道热导率的下限下移。
石墨烯具有非常良好的光学特性,在较宽波长范围内吸收率约为2.3%,看上去几乎是透明的。在几层石墨烯厚度范围内,厚度每增加一层,吸收率增加2.3%。大面积的石墨烯薄膜同样具有优异的光学特性,且其光学特性随石墨烯厚度的改变而发生变化。这是单层石墨烯所具有的不寻常低能电子结构。室温下对双栅极双层石墨烯场效应晶体管施加电压,石墨烯的带隙可在0~0.25eV间调整。施加磁场石墨烯纳米带的光学响应可调谐至太赫兹范围。 当入射光的强度超过某一临界值时,石墨烯对其的吸收会达到饱和。这些特性可以使得石墨烯可以用来做被动锁模激光器。 这种独特的吸收可能成为饱和时输入光强超过一个阈值,这称为饱和影响,石墨烯可饱和容易下可见强有力的激励近红外地区,由于环球光学吸收和零带隙。由于这种特殊性质,石墨烯具有广泛应用在超快光子学。石墨烯/氧化石墨烯层的光学响应可以调谐电。 更密集的激光照明下,石墨烯可能拥有一个非线性相移的光学非线性克尔效应。
在非极性溶剂中表现出良好的溶解性 ,具有超疏水性和超亲油性。科学家在2015年的研究中表示约4125K ,有其他研究表明熔点可能在5000K左右。可以吸附和脱附各种原子和分子。
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)